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V. On the Kinetic Theory of a Gas. Part II.—A Composite Monatomic Gas :
Diffusion, Viscosity, and Thermal Conduction.

By S. Cuarman, M.A., D.Se., Fellow and Lecturer of Trinity College, Cambridge.
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INTRODUCTION.*
THE present memoir was originally intended to deal only with the theory of diffusion,
which still remains its chief subject. During the course of the work, however, it
became clear that the theory of viscosity and thermal conduction could also be
incorporated by a slight extension of the analysis. This has been done, and the
paper now affords an account of all these three “ ordinary ” mean-free-path phenomena
of a composite gas.

The treatment of viscosity and conduction is brief, partly because the theory
for a composite gas is so much more complex and less important than that for
* See Note I, p. 197.
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116 DR. S. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE

- a simple gas.®* TFor the same reason the results are not carried to a higher degree
of approximation than that attained, in regard to the same phenomena, in an earlier
memoir. The present method, however, enables the approximation to be carried
to any degree of accuracy, which was not formerly possible. Also a certain mistake
in the previous investigation of the conductivity of a composite gas is indicated and
corrected (cf. § 18).

By its very nature, the problem of diffusion requires the consideration of molecules
of two kinds, a complication which is unnecessary in the construction of a theory of
viscosity and conduction. Perhaps this circumstance largely explains the greater pro-
gress which had hitherto been made in the latter theory, as compared with the theory
of diffusion. Until recently the only accurate expression which had been obtained
for the coefficient of diffusion D,, was that deduced by MAXWELL in his second great
memoir} on the dynamical theory ; it referred exclusively to a gas whose molecules
inter-act according to the inverse fifth-power law of force. The best available value
of D,, for molecules of other kinds was due to LANGEVIN§ but the formula, unlike
MAXWELL'S, was only approximate. It was determined on the assumption that the
distribution of velocities in each group of molecules, relative to the mean velocity
of the group, was according to MAXWELL's well-known law appropriate to a gas
in the uniform steady state. The amount of error (if any) introduced by this
assumption was unknown. In the present paper the true law of distribution is
determined, and an exact expression is obtained for D, which is applicable to the
most general case of a composite monatomic gas. It is found on comparison that
the error of the above approximate formula is as great as 13 per cent. in extreme
cases (§ 13 (e)).

A particular case of LanNcEVIN'S formula, relating to rigid elastic spherical
molecules, had previously been deduced by StErFAN in 1871. The theories of
MaxweLL,|| STEFAN,T BorrzmanN,** and LANGEVIN, and my own earlier theory,
all agreed in predicting no change in D,, with the relative proportion of the two sets -
of molecules. Another theory, originated by MEYERTT, asserted that there would
be a large variation in Dy, as the proportion of either component varied from 0 to 1.

* This has been dealt with in detail in my recent memoir, ¢ Phil. Trans.,” A, vol. 216, pp. 279-348, 1915.

1 ¢Phil. Trans.,” A, vol. 211, pp. 433-483, 1911. ’

i MaxweLL, ¢Collected Works,” ii., p. 27. His formula for D;, is a special case of the general
result (13:03) of this paper. '

§ LaNGEVIN, ¢ Ann. de Chimie et de Physique,’ (8), v., 245 (1905) ; ¢f. also ENskog, ‘Phys. Zeit.,” xii.,
533 (1911). The same result was independently discovered by the present writer, ¢ Phil. Trans.,” A
vol. 211, p. 499 (1911).

| MAXWELL, ¢ Collected Works,’ i., p. 392 ; ii,, p. 57, p. 345.

€ StEFAN, ¢ Wien. Sitzb.,” 63, (2), p. 63, 1871 ; 65, p. 323, 1872.

** BoLTZMANN, ¢ Wien. Sitzb.’ 66, p. 324, 1872 ; 78, p. 733, 1878 ; 86, p. 63, 1882 ; 88, p. 835, 1883 ;
also < Vorlesungen,’ i., p. 96. A
11 MEYER, ¢ Kinetic Theory of Gases,” p. 255 (English ed.) ; also GRross, ¢ Wied. Ann.,” 40, p. 424, 1890.
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MONATOMIC GAS: DIFFUSION, VISCOSITY, AND THERMAL CONDUCTION. 117

The experimental data which were determined in order to test the point confirmed
neither conclusion ; a variation in D,, was observed, but it was so much smaller than
that suggested by MreYER’s formula that the experimental values of D,, were in closer
numerical agreement with a constant expression than with Mryer’'s highly variable
result. Recently KueNeN* has modified MEYER'S theory by taking into account
the tendency of a molecule to persist in its original direction after collision, a
consideration the importance of which was brought into prominence by JEANst
in connection with the elastic-sphere theory of viscosity. As a result of this revision
MEYER'S theory is brought much more closely into accord with experiment (§ 13 (7)),
though the discrepancies still exceed those between the observed values of D,, and
a suitable constant mean.

In §13 (¢) the observations of D,, relating to the above variations are compared
also with the results of the present theory, which affords a formula similar to that
of LANGEVIN but multiplied by a correction factor which is a function of the relative
proportions of the component gases. The agreement with experiment, while not
exact, is perhaps as close as the degree of experimental errors, and the uncertainty
as to the best molecular model, entitle us to expect.

The present theory of diffusion is compared also, in two particular cases, with
exact results obtained theoretically by other writers. These cases are () that of
a gas formed of two sets of molecules which are identical in their dynamical
properties (as in the problem of the self diffusion of a gas), and (b) that of a gas
in which the ‘molecules of one kind are infinitesimal in size and mass compared with
those of the other kind (as in electronic diffusion in gases). These problems have
been dealt with respectively by Pippuck} and LoreNTz§; the corresponding special
forms of the general expressions here deduced are in satisfactory accordance with
their results (§ 13 (e), (f)). '

Certain other phenomena connected with diffusion are also discussed which do not
seem to have been investigated in any detail hitherto. In §§10, 14, 15 it is shown
that diffusion may be produced by a gradient of pressure or temperature independently
of the presence of a concentration gradient or of external forces; in §§14, 15 the
amount of this effect is considered, with numerical illustrations relating to particular
pairs of gases. Conversely, the absence of diffusion in a composite gas in which the
temperature is non-uniform (the pressure being uniform and there being no external
forces) implies the existence of a corresponding variation in the relative concentration
of the two gases. This latter variation (¢f. § 16) appears to be so large in amount

* KUENEN, ‘ Supp. No. 8 to the Communications from the Leyden Physical Laboratory,’ January, 1913 ;
also ¢ Amsterdam Acad. Proc.,” 16, p. 1162, 1914.

t JEANSs, ¢ Dynamical Theory of Gases’ (2nd ed.), pp. 276, 292, 328.

{ PIDDUCK, ¢ Proc. Lond. Math. Soc.” (2), 15, p. 89, 1915,

§ LORENTZ, ©Archives Néerlandaises,” 10, p. 336, 1905 ; ¢ Theory of Electrons,’ p. 268. More general
results obtained by JEANS, using LORENTZ’S method, are given in his ‘Dynamical Theory of Gases,’
ond ed., §§ 314, ¢t seq. Cf. also PIDDUCK, loc. cit., p. 112.

s 2
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118 DR. 8. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE

as to suggest a doubt whether some compensating influence has not been overlooked
in the theory, and it is desirable that the matter should be put to the test of
experiment (see Note A, p. 196). In §§12, 19, it is shown that diffusion is neces-
sarily accompanied by a transfer of thermal energy, and a new physical constant,
the ““ specific energy of diffusion,” is introduced and discussed.

The method used to determine the velocity-distribution function is similar to that
published in my recent memoir on a simple gas; the details of the work are, of
course, more complicated in the present case. The formulation of the equations
of diffusion and energy for a composite gas, executed in §§ 10 and 12, embodies
certain features which seem to be novel.

We may here remark also upon some by-products of the analysis which suggest
interesting developments in the field of pure mathematics. The comparison of
LorENTZ’s solution of the problem of electronic diffusion with my own has led to
expressions for = and sin =z of an altogether new form. LorENTZ used BoLTZMANN'S
integral equation for the velocity-distribution function, and obtained a solution in
finite terms involving = ; the solution arrived at in this paper is determined by the
use of the aggregate of the equations of transfer (§2), which is really equivalent
to BorrzmANN’s equation. The result is expressed, however, in terms of the quotient
of a symmetrical infinite determinant by its principal minor, and formule of this
kind are hence found for = (and also for sin =z). The elements of the determinant
are expressible simply, in terms of gamma functions. A further study of the subject
from the analytical point of view would probably be fruitful in results of interest and
importance (see Note B, p. 196).

I hope later to apply the present methods to the examination of the problems
offered by rarefied gases. So far, however, as concerns the mean-free-path phenomena
in monatomic gases under normal conditions, the investigation imperfectly attempted
in my memoir of 1911 is completed by this and the second paper already referred to
(‘Phil. Trans.,” A, vol. 216).

It is a pleasure here to make grateful acknowledgment of my indebtedness
to Sir JoserpH LARMOR throughout these investigations, which were started under
his influence, and would hardly have been carried to this stage but for the inspiration
afforded by his continued encouragement and interest.

§ 1. Avarysris oF THE DYNAMICAL STATE oF A CoMPOSITE GAS.

(o) Notation.*

The gas considered in this paper is one composed of molecules of two kinds, each
having the property of spherical symmetry (or, in brief, each being ‘ monatomic”).

* In numbering the equations I have adopted the decimal method introduced by Prano. The
number to the left of the decimal point is the number of the section, and within any section the numbers
to the right, if read as decimals, are in numerical order. With this method it is possible, by the
introduction of a third or even fourth figure, to number equations inserted between others already
numbered, without having to alter the references to all succeeding equations.
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MONATOMIC GAS: DIFFUSION, VISCOSITY, AND THERMAL CONDUCTION. 119

The density of the gasis supposed to be such that the mean free path of a molecule
is large compared with the distance at which molecules appreciably affect one
another’s trajectories: this we express concisely by terming the gas  nearly
perfect.”

Similar quantities relating to the two groups of molecules will be represented
by similar symbols, with distinguishing suffixes 1, 2; it is convenient to adopt the
convention that the first gas is that which has the greater molecular mass. The
molecular masses will be denoted by m,, m,, while the notation for various other
characteristics of the gas at (x, ¥, 2, t)* is explained by the following list :

v, v, = the number of molecules of the first and second kinds
per unit volume.

A1 Ay = the proportion of molecules of each kind at (z, y, 2, ).

o1, p2 = the densities of the constituent gases.

P,, P, = the external forces (in vector notation) acting on each
molecule m,, m,. '

(X, Y, Z), (X, Y., Z,) = the same forces in Cartesian notation.

¢, €5 or (g, 01, W), (Us, v, wy) = the mean velocities of the two groups of molecules in
vector or Cartesian notation.

We define further quantities of the same nature, in terms of the above, as
follows :—

(1°01) vy =wm+vs, sothat A = vf(n+w)=unlr, Xz=nfln+w)=mnl, N4+ =L1
(1°02) 22X, = M=y, M2 = Mg, Aot = NofN;,  so that AN, = 1
(1°08) my, = \ymy +Aymy, mly = A (my—my) = =Ny (Mmy—my) = A\, (M —my).
Now we have
(1-04) o= My, py = v,

so that, by (1°01) and (1°03),
vy,
A,

(1°05) Po = prtpe = WMy vy = vy, Po = = v, (my—my).

Also, in vector notation P, ¢, we shall write

(1.06) Po E -K1P1+>\2P2, P’O E A] <P1—%P0> = - A2 <}_)2"‘ 77_:1,.“)/}.)(\> == Ax)\g <%P1_@P2>.
. 0

m, Ty my
(1°07) ¢y = Mer+2ge,, o = M (e—cp) = =N (e—cp) = A, (e —c).

* ILe., at the point (2, 9, 2) and at time 7.
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120 DR. S. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE

The corresponding component equations, involving X, Y,Z or wu, v, w with
appropriate suffixes, are similar and will not be written down here.

By inverting the above equations we obtain the following expressions for the
original in terms of the derived quantities :—

m/ m P’ c
1'08 m =my+—, P==2P+= ¢ =c+=2
( ) 1 0 }\1 1 mo 0 Al 1 0 Al.
m/ m P c
1°09 m =m-—-—°, P =—2P-—-——9, C, = ¢y— 2.
( ) 2 0 AZ 2 mo 0 )\2 2 0 )\2

(b) The Interpretation of the Derived Quantities.

Corresponding to (1°08) and (1°09), the motion of the gas can be analysed into (&)
a steady motion of the composite gas as a whole with velocity ¢,, together with (b) a
motion of interdiffusion in which the mean velocities of the two streams are
respectively ¢/,/A, and —c/fx,. In this latter motion equal numbers of molecules are
transferred per unit time in each direction, the number (per unit area normal to the
direction of the vector ¢;) being vy, since by (1°01)

( 1 : 1 O) V10/0/>\1 = V20,0/>\2 = Voclo-

The momentum of the common motion (a) is clearly p,c, per unit volume, while that
of the motion of interdiffusion is v, (m,—m,) ¢’y or, by (1'05), p'scs; in general this is
not zero, owing to the inequality of mass of the molecules, although the diffusing
streams convey equal numbers of them in any interval of time. This analysis of
momentum corresponds to the equation

(1 ‘11) P10y PaCy == MG+ VMaCy = pCo+ p'oC .

The equations (1°06) differ from the others by involving the molecular masses as
well as » and »,. This resolution of the forces P, and P, may be considered as

My

follows : the first terms (¢f. 1°08 and 1°09), viz.,%Po on m, and P, P, on m,, represent
0

(1]

forces which will impart a common acceleration Py/m, to each group of molecules (we
may regard this variation as affecting their common velocity of streaming, ¢,); the
remaining components, P’,/x, on m, and —P’ /A, on m,, when summed up over the
v, v, molecules of the corresponding groups, afford equal and opposite total forces
vP’, »P% In connection with this we may remember that two such interdiffusing
groups of molecules as we have considered will exert equal and opposite actions on
one another, and that equal and opposite forces must be applied to the two groups if
their motion of interdiffusion is to be maintained, or modified without imparting any
common velocity to them.
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MONATOMIC GAS: DIFFUSION, VISCOSITY, AND THERMAL CONDUCTION. 121

As regards N, this is useful for the purpose of imparting a symmetrical form to
some of our equations; if D denotes a differential operator of any kind with respect
to (x, 9, 2, t), since \;+X; = 1 we have, by (1'02),

(1112) D, = =D, = D (A= 2,) = DX,

(¢) The “ Peculiar” Motions of the Molecules.

So far we have been concerned with the mean velocities of the constituents of the
gas, without considering the actual motions of individual molecules. We shall denote
the velocities of typical molecules of the two kinds by (c), (¢), or {(u), (v),, (w),},
{(%)s, (v)s, (w),}, when referred to the co-ordinate axes, or, when referred to axes
moving with the velocity ¢, appropriate to the point and time in question, by C,, C,
or (U, vi, Wy), (Us, Vo, Wy).  Thus '

(1-18) C, = (¢),—co, C, = (¢),—c,.

The velocities C,, C, will be called the ““ peculiar ” velocities of the molecules.
We have no means of determining the individual values of C,, C, for the molecules
near (x, 9, 2, t), but for a given state of the gas, as specified by its composition, mean
. motions, pressures, and temperature (these are expressible in terms of mean values of
functions of C), there will be a certain frequency law, or function representing the
distribution of various values of the velocity among the molecules. The determination
of this velocity-distribution function is fundamental in the method of this paper. It
will clearly involve C or its components as independent variables, together with
certain parameters (e.g., pressures or mean velocities) which are dependent on
(2, 9, 2, t). '
The mean value of any function of the molecular velocities will be denoted by
placing a bar over the expression representing the function. Thus, for instance

(¢f. 1°07),
(1'14) (C—): = ¢y, (—C_); = ,02’ (71 = (C_);—Co =C—C = C,0/7\1» —62 = (55_2"'00 =02“Co=_‘c/0/>\2-

Tt is convenient at this stage to modify the meaning of our symbols C,, C,, which
have so far represented vector quantities; henceforward they will denote not the
vectors themselves, but their amplitudes. These, of course, are essentially positive,
scalar quantities. Thus

(1.15) 012 = U]_2+V12+W12, 022 = U22+V22+W22.
The mean energy of peculiar motion per molecule is LmC? and we shall write

(1'16) mCP = 2> =8RT,,  mC7= - = 3R,
2
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122 DR. S. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE

where R is the “ universal gas constant.” These equations define 2 and T; we shall
call T,, T, the absolute temperatures of the component gases. According to the
theorem of equipartition of energy, in the uniform steady state of a gas they are
equal. In the slightly disturbed states which we shall consider, the differences
hy—hs, T, =T, will be small.*

We further define p,, p,, p,, the mean hydrostatic pressures of the separate
components of the gas, and of the total gas, by the equations

(1.17) = %Vlm](—j—lé = 2}2, = BT, P = %I/gmfz”;3 = 5%; = Ry, T,
1'18 +p, = 24 2 =20 =R, T,
( ) Do = P11+P2 2h 2h, ~ 2h, vo Lo

The last equation also defines h, and T,; the latter will be called the absolute
temperature of the composite gas. Clearly

» — 1M A
(1-181) T, = NT,+2.7T,, s +h2
‘We shall define T",, p',, #/, by the equations
(1°182) Ty = M (T,=T,) = =2, (T,=T,) = an, (T, =T,),

. L (1 _1y__ <l_i>~ 1_1
(1-183) W= A‘Khl ho/ ==X, )= >\1>\2<h1 h)’
The following equations are inverse to the above :—

4 4

(1°185) T, = I‘+K1—, T_T_—A;’
(1-186) 1= N (PotNip'), P2 = N (Po=2Aeps)-

* |In the paper as originally communicated, no account was taken of these differences, a preliminary
examination having indicated that they do not materially affect the theory of diffusion. The distinction
between T, and T, has been re-introduced at the suggestion of a referee, in order that its influence, if any,
on the phenomenon of thermal diffusion might be made clear. It will appear that T;—Ty is a small
multiple of the rate of change of Ay (or A() with #me, so that in steady states of the gas it is a small
quantity of the second order only ; in particular, the phenomenon dealt with in § 16 is unaffected.

Throughout the paper, wherever a distinction is made between 2; and %, Ty and T, or wherever T
(equation 1-182) appears, this has been introduced on revision (June, 1916). The original form of the
equations may be found by making the difference zero. An appendix has also been added on account of
this extension.—June 2, 1916.]
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MONATOMIC GAS: DIFFUSION, VISCOSITY, AND THERMAL CONDUCTION. 123

(d) Some Convenient Limstations of the Problem.

Our immediate aim is to determine functions f; (Ui, Vi, W), f2 (Us, Vo, W,) which
define the distribution of the peculiar velocities of the molecules, ¢.e., which are such
that the number of molecules of the group considered (the appropriate suffix 1 or 2

“being added throughout), the components of whose velocities lie between (U, V, W)
and (U +dU, V+dv, W +dW) respectively, is

(119) (U, V, W)dU dV dw

per unit volume. Besides the independent variables U, V, W, these functions
J (U, v, W) will also involve such quantities as », A, P, ¢, h and their derivatives, all
of which are functions of (z, y, z, t). The distribution of the peculiar velocities is,
however, clearly unaffected by the absolute magnitude of the mean velocity ¢,
(though the same is not true of the derivatives of ¢,). We may, therefore, legiti-
mately make the simplifying convention that ¢, = 0 at the particular point and time
under consideration. This merely amounts to a particular choice of uniformly moving
axes of reference, a choice which the laws of dynamics leave quite unrestricted.

Our concern being with problems of molecular rather than mass motion, we shall
suppose that the acceleration of the gas as a whole is of the first order only, which
requires that the resultant force on’ unit mass of the gas, viz., Py/m,, shall be small.
We shall also suppose throughout that the velocity ¢/, of interdiffusion, and the
derivatives, with respect to space and time, of », X, ¢, k, are all of the first order, at
most* ; consequently, since in this paper we shall neglect second order quantities,
products and derivatives of any of the small quantities just mentioned will be omitted
from our analysis.

§2. Tue EQuATiON oF TRANSFER OF MOLECULAR PROPERTIES.
(@) The Equation of Continusty.

The general equation of transfer for a function Q; of the velocity components
(u)s, (v)1, (w) of a molecule of the first kind ist

[o
(z01) 20 =2 6@+ 3 [ Lo -2 x T,
z,Y, 2
where AQ, denotes the rate of change of »Q, at (x, y, 2, ¢t) produced by the encounter
of the molecules of the first kind with others of the same or the other kind.

* [And likewise p'o, T', 1/Ao, when we are considering unsteady states in which Ty 5% Tg. —June 2,
1916.]

t Cf. Chapter IX. of JEANS’ ¢ Treatise’ (2nd ed.), and also, for the details of the reduction of (2-01)-
(2:02) and (2°09), ¢ Phil. Trans.,” A, vol. 216, p. 285.

VOL. CCXVIIL.—A. T
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124 DR. S. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE

If we write Q = 1, since AQ, = 0, and 0 0, the equation of transfer reduces

3 (u),
to

L On , 0(nwy)  30ww) 3 (nw) _
(2011) R e e e )

which is the equation of continuity for the first component of the composite gas. By
adding to this the corresponding equation for the second component, we obtain the
equation of continuity for the gas as a whole, in the form

=0

0 (Vl + V2) n 0 (u,u1+u2u2) n 0 (V{Ul +V2?)2) + 0 (ul’wl +V2’Ll)3)
ot ox oy 0z
or

. v, a(Vouo) (Vo’Uo) 8(Vowo) —
(2012) 5t At 50 + = = 0.

If at the point under consideration the mean velocity of the gas is zero, the last
equation may be written

(2013) Lo _ <au° + %y %>

v, Ol dx dy 0z

(b) Ql = Ulclzs-

If in the equation of transfer (2°01) we assign to Q, the value (%), (¢)*, and omit
all terms which in a gas of ordinary density are of the second order, we find that

(2:02) AUC® = L:3:0.-(2543) )[%Jr ! l?..v_l_._.X1+(s+1)ax< - >]

3 (2hym, ) 2hm, v 0 My 2hym,

We have here used the convention that ¢, = 0 at this particular point and time,
so that (¢} and C, are identical, and, except in differential coefficients, ¢, can be
neglected.

If we multiply both sides of (2°02) by m4, and add the corresponding equation for
the second group of molecules, in the case when s = 0 we obtain the result

(2.03) A (m U +myU;) = (V1'm/1+V2’l')’b2) auo + < Loy 1 aV2>

9k, Ox o 2h, Ox
o/ 1 o/ 1"
— (V1X1+V2 2) + {Vl ox <2h1> T é;<2-]b;)}

0 0/
= Vomo %) _V0X0+ %‘("27 + ﬁ>
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MONATOMIC GAS: DIFFUSION, VISCOSITY, AND THERMAL CONDUCTION. 125

by (1'18). In this equation the left-hand side is the rate of change of the momentum
per unit volume of the whole gas at (x, y, z, t) which is produced by encounters
between the molecules. Since, however, an encounter between two molecules leaves
their combined momentum unchanged, A (m,U,+m,U,) is zero, and consequently

ou, 1 1 9p,

(2 04) —a—-t— = /n—%; Xo— v ax .

This and the two similar equations in y and 2 are the equations of mean motion of
the gas.

We will now apply (2°04) to the elimination of %:_0 from (2'02). At the same time

we shall neglect the difference between A, and A, T, and T, in products or
derivatives, since our equations are to be carried only to the first order of accuracy.
Then (2°02) becomes

. 3(2}"0’”"1) my 2 _ 1 10y _my ﬂ_ B(
(205) 355 @18 AV =g a T OX — X e T ) h0>

_ 1 /1o 131/0) i(_L>_.1_ ) My 0P, <1>
'2h< aw Taw) T3\Eh) TR N vme o T aw\2h

L[_]‘__QZ\__Q__X’ m _ﬁ_]+R3 aT
A

L2k, Ox T e, Ox Erh

i

Thus, if we write
. - Lé}_,&__ 4 _/’_n’:f’_ m
(2°06) o= 2h, ox X vy, 0x

the equation (2°05) and the corresponding equation for the second set of molecules
become ‘

(2.07) 3 (52h0’nzlé?s+3) mlAUICI = Vof +R8V1 aaT
. 3 (2hymy)’ . o,
(2'08) T3 5. (2s73) A" = — wflok Reny 528

To this order of approximation, therefore, these equations do not involve T,

(c) Q, = U C™

When Q, = UC,*, the equation of transfer takes the form (¢f. § 8 (C) of my second
paper, loc. cit.)

(2'09) 15 (2h,m, )**? AUSC = 50 {1 o Lo (8+1) 9% 0 <_L>}

1.3.5...(25+3) v O ' 3t \2h
ou, , 0, 8w0>
+(28+5)V1( P +ay %)

T 2
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126 DR. S. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE
Now
. ou, oV, , ow ou,  0ov,  Ow . ou, Ov, Oow
2°'10 g 20 0 o=5< 0 0 0> ‘1<2___;)__0___0>
( ) ox +8y+8z S\ow +8y+8z +3 ox dy Oz
_ s 1oy
- 3" " at +3 Tz

by (2°013), where also we have used the notation indicated by

( = 2%,%_%
= ox ody 0z’
: — g 0y _dwy,_ Uy
o 0wy _ Uy _ 90y
.~ 0z Jdx OJy
Evidently we have
(2'12) - CortCpytC, = 0.

By substitution from (2°10) into (2°09), we find that

15 (2hym, )°**
1.3.5...(25+3)

204 25 1 9y ( 1 aVo}
AUSC = 5y {Vla +(s +1)2hlat %) ~3(2s+5) L2

s

(2:13)

+2(25+5) ey,

If we divide both sides of this equation by 10.24,, and assign the zero value to s,
it becomes

. 1 Oy __a_<1\ i___l% 2 }
(Z 14) Ag’m;lul - {zk at "l”Vl at 2]2,1) 52h1 v at +3h1 cxx o

On adding to this the corresponding » and 2z equations, the result is

. 1 1 apl l %)
(2'15) Azm,C,? —“?pl(p % S0t

There is a similar equation for the second set of molecules, and by addition of the
two we get

e 2\ __ — 1 a 0 __ L%)
(2 16) A(%ﬂ?‘lc +2’m2C )"‘ 0 ""2po<p0 o v ot)’

_the left-hand side being zero, since energy is conserved throughout molecular
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encounters. The integration of the last equation gives us the equation of state of
the gas, viz.,

(2:17) Py~ = constant,
or
(2:18) , Ty~ = constant.

We will now return to the general case of (2'13); on neglecting the difference
between A, and A,, T, and T,, in derivatives and products, the equation becomes

(2.19) 3 (2h0m1)3+1 Aulzolzs =y [1_ _a___u_l___l @l/_o + (s+1){2h0 a < 1 ) % ;1_— QKQ}]

1.8.5...(2s+38) v Ot w, Of ot é—h_o B v, Ot
. +IZ5'(28+5) V1Cpy
= Voﬁ'+125(28+5) IIICu

by (2°18). The similar equation for the second set of molecules is

3 (2hym,)*+?
1.3.5...(25+3)

’
AUSCH = —uy o 2 (254 5) we,..

(2:20) T

(d) Ql = V1W10123~

From (220), by transformation of rectangular co-ordinates, or by direct calculation,
the equations of transfer in this case may readily be shown to have the form

(2h,m, )**!
(2°21) i 2(5 Omé)28+3) AV,W,C* = 1% (25+5) nc,,,
. 3 (2h0m2)‘+1 s _ 92
(2'22) 1.3.5...(25+3) AVW, O = 7% (254 5) ey,
where
ov,  ow
= 3 (220 4 270
Gy = 7<8z + 8y>'
(e) Q = C=

By the addition of the #, y, and z equations corresponding to (2°19), (2°20), and by
changing s to s—1, we may obtain the following simple equations :—

(2hym, )
1.83.5...(25+1)

ACE = 5, 220 = (2hgmy)

(2:23) ot  1.3.5..(2s+1)
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128 " DR. S. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE

§ 3. Tur VELocrty-DisTrRIBUTION FUNCTION.
(a) The Form of the Function.

In the uniform undisturbed state of a gas, in which ¢, A, % are constant, while ¢/,,
by, P are zero, the velocity-distribution functions assume MAXWELL'S well-known
form '

' 3y sty
(3.01) (ﬁ)o — <}_L(ﬂ1> e-—hom1012, (._fg)o — (ZLO_WLQ> e_hochzz.

w

The suffix 0 appended to f; and f; is to indicate the special state to which these
equations refer. They clearly satisfy the necessary conditions

(3-02) m (s dU, dV, dW, = 1, m (£),Ci2 AU, AV, dw, = 2h3m-,

and similar equations with suffix 2.

In the general slightly disturbed state considered in this paper, £ (U, V, W) will
differ from ( /), by an amount of the first order. From the equations of transfer (§ 2)
it may be deduced*® that /' may be expressed as follows :—

(3.03) fl (Uh V1> Wl) = (fl)o ,:1"'?1’;2hom1A0(U1£,0+V1’7’0+W1§/0) Fl( —/12)

0 dT 0
—%-2}2/077&1:80 <U1 ‘agg +V1 ‘aj) +W1 ’é%) Gl (012)

_125 2hom100 (szulz + nyvl2 + czzW12 + 2Cyzvlwl + ch:WIUI + 2csz1V1) Hl (012)

"'Do aaLt,O Jl (012)] 3

(8'04) f3(Us, Vi, Wo) = (fo)s [1—%;2hom2Ao (Us’y+ Var s+ W,l'y) Fy (C)

oT oT oT
“%ZhomgBo <U2 "é"w-o‘ +V2 ‘éj + W2 _’a;O> G2 (022)
- 3:’25‘2})/0771/200 (CIIU22 + nyv22 + czzW22 + 2Csz2W2 + 2czzW2U2 + 201'1/ U3V2) H2 (022)
N
-0, 227,05 |
The constants A, B, C, D, and the functions F(C?), G (C?), H(C?), J(C?)
remain to be determined. The latter involve (x, y, 2, t) only through the occurrence

* The argument is given in my second paper, loc. cit., §§ 2, 6, and will not be repeated here.
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of v and % (but not their derivatives) as factors. We suppose them to be capable
of expansion in power series as follows* (see Note C, p. 196) :—

305 S (2hm,)" ar 2\ _ (2hmy,) o
(305)  Fu(Cr) = 2% 135, (27'+3)01 » T(G) = 2 1305 (2q~+3)02’

. 3y — v (2hm,) 2y _ v (2hm,)" ar
(3:06) - Gi(Gy) 506’1.3.5...(2o~+3)r G(C5) = 2 = B 3.5.. (2r+3)r02f

. (2hm,) 2r 2 (2hmy) 2r
(3:07)  H.(Cr) = }‘ »"1.3.5.. (27~+5)C1 , (G )”” o’ "1.3.5.. (2r+5)02 ’

(2hmy )

thz)r C2’r
"1.3.5...(2r+1) ’

(8:071) J(C¥) = 2 3, 1.8.5...(2r+1)

Clﬂr’ (C 2) = 2: 3_,

"The dash (') after the sign of summation in (8°06) is used to signify that the
factor » in the denominator of the numerical coefficient is to be omitted in the first
term (r = 0). The choice of the notation +7 and —r for the suffixes has a convenience
which will become apparent later; we may remark, in passing, that for this purpose
a distinction must be maintained between +0 and —0. ‘

In (3°03) and (3'04) the constants A, B, C, D, can be chosen arbitrarily, but
when this has been done, the remaining constants «, 3, y, ¢ all become perfectly
definite.

() Relations between the Coefficients.

The velocity-distribution functions f(U, v, W) must satisfy the three conditions
expressed by the equations (with appropriate suffixes 1 or 2 throughout) :—

(3708) Wf(u, Vv, W) du»dv dw =1,

(3:09) M F(U, Vv, W) C2du dv dw = 2—}% (hy or hy),

(310) jjjﬁ (Ul, Vi, W1) Uy dUl dV1 dW1 = Up—Uy = u,‘)/)\l,
jjj'ﬂ(Um Vg, Wg) U2 dUg dV2 dW2 = uz'—uo == "u,0/>\2.

* [Here, and throughout the remainder of the paper, where 4 and T appear without any suffix, they are
to be read as kg and To.—June 2, 1916.]
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130 DR. S. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE

These yield the equations

(3:101) ﬁs, =0,
0
(3102) | 35, =o.
0
axl ® T/
9 iD Z=e =0,
(3103) iD, - %(2r+3)3, T
) . = T
. 1 0 - =0,
(3°104) $D, 72 (20 +3) 3., T
(311) —%{Aof,o §0‘1-*!"]30 QT— §, Ir—lﬁr} = u,()/}\l’
‘ 0 ox o )
(3'12) _%{Aof,ogo‘—r’*‘Bo%g, ”'_1,34} = —’U',o/hz-
0 0

In each of the pairs (3°108)—(8°12) we will multiply the first equation by A, and the
second by A, respectively, and add. We may separately equate the coeflicients of

£, and % (in the second resulting equation) to zero, since these quantities are quite

independent of one another, and of their coefficients. We thus obtain the conditions

(8'121) ME(2r438)8, ==& =—\Z(2r+3) 0,
0 0
or, by (3°101), (3°102),
(3'122) MZErd, =8 =—=2,3rd_,.
1 1
(3:13) Mo, =—dh =20,
[} 0
(314) M B, = =B =028,
0 0

where also we have introduced a convenient notation for the separate sums involved.
Expressed in terms of this (3°101)-(3'12) are equivalent to

(31 5) u’o = %— <a/0A0£'0 +/810B0 %%) s
/
(3'151) T, = 1D,T, &, %_o
/
[ Throughout the remainder of the paper we shall neglect ‘%\t@, 1.e., we shall practically

assume that the ratio of mixture is not varying with respect to time. The values
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of a, B, vy determined in the succeeding sections will, however, hold good also in the
general case; the determination of the &'s will be found in the Appendix.. All the
corrections to (f), are of the first order, and hence are separately deducible ;
the complete value is obtained by adding to the series in a, 3, y, calculated in the
body of the paper, the series in §, determined in the Appendix.—June 2, 1916.]

§ 4. CompLETION OF THE EQUATIONS OF TRANSFER.
() The Values of AQ.

We may now complete the equations of transfer (2°07)-(2°10) by the insertion of
the values of AQ), calculated in terms of the constants in the expressions for £(U, V, W)
given in §8. The calculation of AQ is a lengthy and elaborate operation which will
not be described here, since a full account of it is to be found in my second memoir
(‘Phil. Trans.,” A, vol. 216, §7, p. 8301). It appears that only those terms in f which
are of odd degree in U, V, W contribute to the resulting expression for AUC*, and
only the even terms, similarly, contribute to AU?C*. The following results will be
quoted forthwith :—

3 (2hm1 )s

401 —_— L
( ) 98+1 (3+%)3+1

mAU,C* = .?0 [ml <NrsAof IOar +sN’,,B, %}: /8r> {Pn (7“131) + p1a (”'131)}

+ my <NNAO£,0“—-1' + SN/rsBO g% ﬁ-—r) P12 (7'281)] 3

(4-02) %Lng)s"mzA U,Co* = % [’mfl <NrsA0$ ‘oo, + N, B, o1 18r> pon (7152)
2% (s+8)sia =0 ox

+my (N, Aof’o“—r +sN’,,B, g—g 13—-r> { P22 (2"232) + pa ("’232) }] )

. 5 2 +1 s ) )
(4 03) %5—'}1@— 1 A U12O * = l C Cox b N”rs [yr {Plll (7"181) + P,12 (7'181)} + 'Y-—rP,12 (7'231)]’
2 (3+7)s+2 2n 141 r=0 ‘
. 45 (2h +1 1 ,
(4 04) __(__ﬂz_)__ A Uzz == OOCII N”rs [‘er,m (’1”182) +y_r {P,22 (7”232) + P,21 (7'232) }J

242 (S +5)42 20 r=0

(b) Explanation of the Notation.

In the above equations » and s may take all positive integral values, including
zero. We shall presently alter our notation so as to consider also negative integral
values, but in.the followmg definitions of N,,, N’,,, N”,, the positive numencal
values of  and s are in every case to be used on the right-hand side :

(4.05) NT&' = {2r+s+2 (I'"+%)r+1 (S+L21)8+1}_17 N,TS = ?]éNTS’ N,/i'-! = N7+1.8+1‘
In the case of N’,, the factor  is to be omitted from the denominator when » = 0;

when s = 0, the value of sN’,,, in which form N’,, occursin (4'01), (4°02), is to be taken
VOL., CCXVIL—A, U '
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132 DR. S. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE

~as r'N,,. The meaning of the symbols (»+%),,,, (s+%),,; will be understood from
the following definition, where g is a positive integer and p any number whatsoever :

(406) P =p(p—1)(p=2) ... (p—g+1),  po=1.

We shall have frequent occasion to use this factorial symbol.
The following are the expressions found for p(rs) and ' (rs) in the various
cases :—

(4.07) P11 (""131) = 32y° .U 3_(22”2)9’;2?/2
- 3(r+1, 841)
B )| B+ 1, )4 B 541)

+ 242 {im“]/:i } B¥#+1(r, 5)+

k 2k —1 2. }]
yyn 1B (v, s)=B¥(r, s) |dx dy,

. (4-08) P12 (’)"131) = ';36"/1’/2 Jj. e—(z’+y’)x2y2 .

(r+1, s41)

E [¢12 (y) {Bk('r-l- 1 8)+Bk(7” S+ 1)}
] + dugy s (y) B* (7, 8) 1212 dec dy.
(4.09) Pz (1:81) = Hvivopnry ™ H‘ e g2y

(r+1, s+1)

kz: ) ( -1 )k [¢12k (y) {/‘12‘/2]3" (”' +1, 3) -2 (l’-lﬂz)_llgy2Bk (7"’ 3)
+ l’-zllI’Bk (7‘, s+ 1)} —4 (/‘1/‘2)1/2?/23012,: (?/) B (""7 S )]2112 dxdy. |
(4.10) P’u (’7'131) — 1?)6_,/12 Jj 6—(zﬂ+ys) 2y2

3(r+2, s+2)

S eu™(y) [ng (r+2,8)+2B*(r+1,s+1)+B*(r, s+2)
1 .

2k+1< 2k+1 2k +1 ’ )
+4y”{————~4k+1 B*+1(r 41, )+ B*+(r, s+1)

- (sz (r+1,s)+B* (fr, s+ 1))

4k+1

J(2k+2) (2F+1) porae
+4y {541613%4761133 (r,5)

2k+1)? ok "
+<(476-(!-3)—E47)c+1)+(4k+§)(ik—1)+l>B (7, s)

+ 2k <B2’“ Wr+1, s)+B2"’ (7, s+1)>}

2k (27"_1) 2k —2
T @) @t )

-2 0+ 2 B ) o
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. (4 11) p . (’1”181) _ 51!1112 jj 6—(x*+y5)x2y2

(r+2, 5+2)

[pu () {BH(r+2, 8) + 3B*(r+1, s+ 1)+ B(r, s +2)}

+8ugy gt () {BF (r+ 1, _"5) +Bi(r,s+1)}
— 161,y x:2(y) B* (7, 8) Jigna i dy.

(4.12) P’lz (’}"281) e g ViV jj be—(ﬂ“}-y‘z) w:?y?

(r+2, s+2)
’ (1) [ (@) {nsBF (42, 8) + 3B (-1, 5+1)
+ gy B (7“, S+ 2) —4 (Mlﬂz) /2?/ (Mw Bk (”'+ 1, 3) “*‘szllaBk ("‘a s+ 1))
+ Ay BE (7, 8)} — 8 (sas) "y Pns® () L BH (74 1, 5)
—2 () " B (7, )+ pay "B (7, s 4+1) }
- 16,4;:1#2'_1/4)(13" (y) B ('rs 3)]2112 da dy-

There are also six other equations, similar to the above, except that the suffixes 1 and
2 are interchanged ; these need not be written down here. '

The limits of integration of = and y throughout the above expressions are 0 and .
The upper limits of the summations are in each case indicated by two numbers, which
are not necessarily integers; the upper limit is to be taken equal to the greatest
integer which does not exceed either of these two numbers. The suffixes 1212 or
2112 on the right-hand of the main square brackets of (4'08), (4°09), (4°'11), (4'12) are
there placed only for convenience in printing : they should really be appended to each
of the symbols B*(m, n) contained within the brackets. These symbols are defined
by the following equations :—

(4 '13) Btz (m’ n) = mAk(zlﬁlwz: 2#2?/2) . nAk(2ﬂ1w2a 2M2é2);
Bkzllz (m,n) = mAk(Q’/@mZ: 2#192) . ”Ak(zlulx?, 2/“'23/2)) B (m’ 77;) = mAk<w2; ?/2) "A* (mzs ?/2),

where "A*(u, v) is a polynomial,in powers of u,v defined thus :—

. mAL m Ak W m m, (Wb’}‘%‘) ko, me—ty b
(14)  mA*(u,0) = "A*(v,u) = <) 3§ it et b<m

When & > m, "A*(u,v) is zero. Also uy, ws, iz, um, have the following values :— |
(4 15) = myf (m1+m2) Mg = mz/ (m1+ mz) Mg = m]l’mz = Ml//‘m Mo = m2/’m'1 = ﬂz/ My
50 thaf

i (4'16) it =1, pazp = 1.
U 2
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134 DR. S. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE

Finally we must define the functions ¢*(y), v"(¥), x*(y); these are the only
quantities in the expressions for p (7, s) and p’ (», s) which depend on the law of inter-
action between molecules. If two molecules m,, m, encounter one another, the
direction of their relative velocity will be changed through a certain angle 6,, in a
plane parallel to the initial relative velocity and to the perpendicular (of length p)
between their initial and final lines of undisturbed rectilinear motion ; denoting the

My + My

" magnitude of the initial or final relative velocity by < 5 >‘/’y, 6,, will be a function

1M
of p and y, the nature of the function being determined by the mode of inter-action
between molecules in proximity to one another. Then we have

o0

(417) 9l (9) = (2 +1) {pagh (b )}y [ {1y (cos 0.} p dp,

0

(4°18) Y (y) = (2k+1) {mupsht (mry+m0,) } "2y jo (1—cos 6,,)P,(cos 6,,) p dp,

0

(4.19) Xlzk (y) = (2k+ 1) {/U'I/U'L%b’ (m1+m2)}—l/zy j (1 —Co8 912)2Pk (COS 012) p dp:

0

where Py (cos 6,,) denotes, as usual, the Legendre function of cos 6,, of order k. By
changing the suffix 1 or 2 throughout into 2 or 1 respectively, we obtain the
corresponding expressions for ¢, or ¢,,*, and so on ; mere interchange of the suffixes
does not affect the functions.

By means of the recurrence formula for the Legendre functions, viz.,

(4-20) (h+1) Py,1—(2k+1) cos 6,P,+%P,_, = 0,

we may express y» and y in terms of the function ¢. Thus for V* (y) we have

(421) ) = L ) )+ 5 6 ),

In this way we may prove that ‘ ,
(422) ¥ (1) =35'(0) X =3 ()= (W), ¥ () =—¢' ¥ +26* ).

From the symmetry, with respect to » and s, of the expressions on the right hand
~of equations (4'07), (4°08), (4°10), (4'11) it is clear that

(4'23) Pn("'lsl) = pu (317"1); Plu(’f'lsl) = Pln (317"1), P12(”"131) = P12(317"1), P’12(7"15'1) = P’12(317‘1)-

(¢) Special Values of p(r, 8) and o’ (r, s).

To facilitate the exposition of subsequenf parts of the work it is convenient at this
stage to write down certain special cases of the equations (407)-(4'12), after executing
the integrations with respect to @ and y. Owing to the generality of the functions
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#, ¥, x (depending on the functional relation between 6,, and p, ) the integration
with respect to y can only be made jformally, however, and for this purpose we shall
use the notation

=

(424) K () = (t+lc+2

)H_J e ¢ (y) y 440 dy.

The suffix 11, 12, or 22 is to be appended to K*(t) to correspond with the suffix
of ¢*(y) on the right. The notation is chosen so as to make K*(¢) equal to ¢* ()
when this vs independent of y, as in the case of molecules which obey MAXWELL'S
fifth-power law.*

For small values of 7 and s it is convenient to simplify our formulae by writing also

K’ (t .= K? (t) 7(:’ — K2, (t) L K*, (t

(425) = n= K’12(O) ’ 12 = K,12 (0) ) 99 — K,12(0) .

"= K. (0)’

In terims of the above notation we may now give the following results :—

Cs-1
(4.26) Pu (7'101) = P11(0131) =0, pu (5’111) = Pll(llsl)" = %’gﬂ' (S+2')s+lK,12(O) %x—lotktlh

(4.27) P12 (3101) = pr2 (0131) = §mvwamy2° (3 +%)s+l K’} (O) ?s Coms " Pus'kyy
(4'28) P12 (”’201) = —"%7”’11’2#1? (”'+%)r+1 K’12 (0) %r Ctﬂ;—tﬂltkb
(4.29) P12 (0231) = —%7""1"2//»128 (3 +%)s+l KI]2 (0) %:s Ct/“ls_t/tht)

(4.30) P12(3111) = P12(1131) = ’58)‘7"”11’2/4228(34'%)“1 K/12(0) [‘% %sctﬂls_t//@t (Mlkt‘l',“zkt-;.l)

s—1 :
+$ %3_1 ORI (3M12kt +ug'k, s+ %ﬂl#zktlz)],

(4 3 1) P12( 1231) = —%7V1V2M12s ('5' + %)s+l KI12 (0) l:'% %x Ct/hs_t//-zt (Mzkt + M1kz+1)

s—1
+ Sy %3—1 Couy* 1y (Skt + kt+2""§kt12:];

(4°32) P/u (0131) = P’n (3101) = 5m’ (3 +‘g“)s+2 K, (O) %x Ctktn,

(4.33) P’12 (0131) = P’12 (3101) = %g TV Vot (3+"26‘)a+2 K’12 (O) 2;": Ot/’»ls—tﬂ2t (#1kt+1§6/42kt12),

8
(4.34) P 12 (0231) = 71"’1"2//-22 ( )s+2 Kll2 (0) 203 Ct:“»ls_t//»zt (—Mlkt +T36M1kt12)-

* Cf. ‘Phil. Trans.,” A, vol. 216, § 9 (C), p. 323,
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136 DR. S. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE

It may readily be deduced from the above equations that
(4.35) P12 (”'101) = —pPa (7"102), P12 (7'201) = —pa (""202)a
: (4'36) M1P12 (0131) = — MaP12 (0231), M1pPg1 (0132) = —M2Pa (0232)-

Also, in the case of Maxwellian molecules, for which %k, =1 and %%, =
(whatever the value of ¢) we shall have

(4.37) P12 (1131)_ Opiz (0131) = §mrru,2°s (3 +-%)s+1 K, (0) (3M12+M22+%M1M2]0012),

(4'38) . P12 (1231)“5P12 (0231) = — §mvvamim,’2%s (3 +%)s+l '12 (O) (4'+%k012)-

§ 5. Tae Symsoric SorurioN ¥or THE CoOEFFICIENTS IN f (U, V, W).
(@) The Linear Equations for a, B, y

We now refer back to the two corresponding sets of equations (2'07)-(210) and
(4'01)—(4'04). For the two members of each pair of corresponding equations the left-
hand side is the same, so that we may equate the right-hand sides. Also, as regards
the first two pairs, we may separately equate the parts which contain as factors the

Al

independent quantities ¢, and % . Thus we have

1, & .
(5'01) > A, zo N, [ml“r {Pu (7'131)+P12 (7'131)} +mo_,pis (”'231)] =1, (3 =0tos= °°),
0 r= .

~

1 =
(5'02) — o A, ZONrs[’”?q“er(?"lSz)+m_20‘—r {poz (182) +pu (1:8:)} ] = 1, (s = 0 to s = ),
b r=

1 -
(5'03) RT B, 1%ONINI:”""q/@r {P11(7'131)+P12(7'131)}+m2/8—rP12(7'231)] =1, (3 =1tos= °°)’

(5.04) Rly‘ Ef N'rs[mlﬁmﬂ( 182)+m218—r {Pzz( zsz)"*‘le("'zSz)}] =1, (3 =1tos= °°),

. ‘ 1 ® '
(5 05) i B, 20 sN/,, [mh@rpw (7'131) +muB_,p1s (”'231)] = 0, (3 = O);
b r=

. 1 <
(5 06) ; C, r%{) N”rs [')/r {P’u (""15‘1> +P,12 (”'131>} +Y—TP,12 (”'231)}] =1, (3 =0tos=o ),
. 1 2 4 I3 N
"(5 07) - G, ZON”TS [vep'ar (”'132)+Y—r 1P/ (”'232)+P'21 ("'232)}] =1, (3 =0tos= °°)'
9 r= .

By virtue of (4°26) and (4'85) the equations (5°01) and (5°02) are identical when
s = 0, while (5°03) and (5°04) then assume the same special form (5'05); we may
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recall that in §4 (b) the value of sN’,, was defined to be »~'N,, when s = 0 (or N,,
when 7 is also zero). Moreover, from (4'26) and (4'86), it is clear that in (5°01)~(5'05)
the ratio of the factors of a, and a_, or of B, and B_, has the constant value —1.
Consequently, the above equations do not enable us to determine the separate values
of ay and «_,, or B, and B_,, but only of a,—a_, and B,—B_, which form single
unknowns. When these and all the other values of a, and B, (r # 0) have been
determined, the separate coefficients a,, a_,, 8, B_, may be deduced with the aid
of (3'18) and (3'14).

In order to simplify the notation of our formal solutions for the coefficients e, B, v,
it is convenient to re-write (5°01)-(5°07) in the form

-1 ® .
(5°08) = a0+ (ag—o_g)+ 2 Oty = 1 (s= —» to s = o, including s = 0),

r=—0

(509) 2 b,+13+,,8,. b, By + % e ,,8, 1 (s— — ® to s = o, excluding s = 0),

1)\2 r=1
(5°10) zm@b@+zamwo
r=—o Mg =1
(5711) > ¢y, =1 (%7, +s range from 0 to 00)

= —00

In obtaining (5°09), (5°10) from (5°03)—(505) we have eliminated 8, and B_, by
means of (3°14), and in order to preserve symmetry we have subtracted 1/sx, or
1/sA, times the equation (5°05) from (5°08) or (5'04) respectively. The new symbols
are defined as follows :— A

(5'12) ‘ S>O gy = —W_ge = ”'%AONOsPIE(OISI); Wy = 7)% IXON',.,s {pn (’1"181)+p]9('7'181)} ’)"> O,
0 0
(5 .13) 8O0 ap, =—a_o, =— ql:leNOst(Olsz), Opg = — 7‘?2 AN, {2 (”'232) +pa ("'232)} r<0,
. Yy )

(5'14) r<0,s>0 a,= %@AONrsplz("bsl); Oy = — ?AONM’M (""132) >0, $s<0,
()

B, =B 1 —a) r<—
(5 15) ,r>0 b R 7'+]_ (ar+l 0 “00) b - .A. RaOO’ br _ AOB’)"'*‘]. (ar-—l,() w—OO) ’P< 0’
qey 1B, 1 1 B, 1 _
(5 16) 3>O bs 7\1 A R S+1(a0 s+17 0600) b >\2 A R8+1( 0,51 “00) : S< 0,

1 B 1
b = n A, B (D) (s 1) (om0 "ot ) >0,

(517) s>0
b=t L {1 s =, en1— Cpr 0+ T_oo } -0
TN A R(r+ 1)(s+1) Bp_1,001— W0, 541~ Wp_1,0F Voo 7<<—0,
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138 " DR. S. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE
1 B 1
b, = —;\‘2 AOO (’l'+].)(s+1) {ar+1,s—l_a0.s—l_ar+l,0+a00} r>0,

__1 B 1
L A AR (r4+1)(s+1

) {“r_l.s_1—a_o, s—1— Q1,0+ a_oo} r<—0

(5°19) r>0,5>0 Cps = I%_CON”TS {00 (r181) +p'a (ras1) }
1

Cps = } OON”NP,J:) (1”281) ’r<,_0’ §>0,
X ;

. : 1
(5 20) rL<—0,8<—0 ¢, = o CN”,, {Plzz (7"232) +P,2f (7"25'2)}
2

c?‘s = %‘ OON/,rsplm (7‘182) ’Y‘> 0, 8< ""‘O.
2

On the right-hand sides of the above equations the positive numerical values of
r and s are to be used (whatever their signs on the left-hand side) except when they
are suffixed to a or b.

(b) The Formal Solution of the Equations for e, B, y.

If we may solve the linear equations (5'08)—(5°11), each containing an infinite
number of unknowns, as if they were finite, we arrive at the results

rao—a_0=—g~"(—%ﬂ3—) a,=—g%’5—)— (r = — o to » = =, excluding r = 0), -
(521)] B = —Alkz—g"—((bb—”%) B, = g’((bb’"'j) (r = — o to r = =, excluding » = 0),
V., (Coun) includine =
i y,p=v(c (r = — o to r = + o, including » = +0).

In these equations V (a,,,), V (0,,), V (€.) denote the determinants which have a,y,
Dpns Cmn as their general element ; in the two latter, +m, +n range from 0 to oo, there
being also a central row and a central column in V (b,,) which are not enumerated
by m or n. In V(a,,) the values +0 of m and n are not distinet from one another,
so that this also has a central column (m = 0) and central row (n = 0); V(c,,) has
not got either of these, since +0 correspond to different rows or columns. The
determinant V, denotes that obtained from the corresponding V by replacing all the
elements of the 7™ column by unity or, in the case only of the central element of the
7 column of V,(b,,), by zero. It may be remarked that all these determinants V
and V, are infinite in both directions, covering the whole plane. In two quadrants
(m, n both positive or both negative) the determinants V possess symmetry

(of. (4'23)).
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In order to make this investigation complete, from a purely mathematical
standpoint, it would clearly be necessary to supplement the above formal solution by
a discussion of the questions of convergence raised in the course of our analysis. The
complexity of the problem, however, and the rudimentary condition of the theory of
infinite determinants, may well absolve the author from an attempt at such a task,
for the present. From the standpoint of mathematical physics there is, fortunately,
sufficient numerical evidence (¢f. § 13, f, and ‘ Phil. Trans.,” A, vol. 216, p. 330,
Table I1I1.) to afford reasonable assurance that our expressions converge satisfactorily ;
this is especially so in regard to the formule actually used in the applications of
(U, Vv, W), r.e., (522)(525). '

(¢) On Certain Combinations of the Coefficients a, B3, y.

For the purpose of the theory of diffusion, viscosity, and thermal conduction in
composite gases, we require only certain combinations of «, B, v, and never their
individual values. The following expressions comprise all those we shall find
necessary in this paper; in connection with them we may refer back to (3:18), (3'14),
and the formulee (3°03), (3°04) for £ (U, V, W) :— |

(522) = (g—a),
. 0
(523) go=—2{(B-8)+ 2 (8,-6.) )
(5 .24) 2h (Vlmlg U12— 012 + V2m23 ng— 022) = _'2%3'00011. ? (V]'yr + ng_r),

(5'25) 2h (V1m1U1012+ v2m2U2022) = —%Aéf'o {?52 (Vlao+ Vga_o) + ? (7‘+~%) (Vloc,.+ VZOL_T)}

oT

e {% (V1;30+ V2:8—0) + % z

_%B r 2 (Vlﬁr + V2B—r)}

= _%{Aoflo ? 7 (e, +ve_,) + B, g%g ? (B, + V2i8—-r)}'
We therefore desire to obtain concise expressions for the following quantities :—
(526) D(a—as) BBt 07 (86

(5.27) 2r (Vlar+ VQOL_,.), Z (V1:8r+ V218—-r)> 2z (Vl')’r + V2‘Y~r)'
L1 1 0
The denominators in the expressions (5:21) for a,, 3,, v, are independent of . Hence
our problem consists in the combination of the numerator determinants V, for an
infinite number of values of #,
VOL. CCXVIL.—A. : X
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140 DR. S. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE

(d) Difference-Transformations of Infinite Determinants.

It is convenient at this stage to describe certain operations, by the application of
which we are enabled to preserve the symmetry and increase the convenience of our
determinantal formulse. These operations will be termed “continued differencing ”
by rows, by columns, or by rows and columns, and we shall denote the corresponding
symbolic operators by dy,, &, or d,, respectively. We shall first define them in relation
to infinite determinants which cover only a quadrant of the infinite plane (> 0, s > 0),
and afterwards in relation to the more complicated type which occurs in this paper.

The operation of continued differencing by rows (4,) or by columns (4,,), applied
to the determinant V (f,,), where >0, s> 0, transforms it into the determinant
V (84f;s) or V (8,0/5s) respectively, where

M=

( -1 )erm r—m, s

0

(5 28 ) 303.](;3 = n% 0( - 1 )"scn.f‘r, s—ns 81"0/;‘3 =

m

We may effect the operation 4, as follows: from each element of row s we subtract
the corresponding element of row s—1, for every row from s = 1 onwards: this done,
we repeat the operation on the transformed determinant, except that we now begin at
s = 2: and this process is continued without end, beginning each time with the row
next after the initial row on the previous occasion. It may readily be seen that the
result i1s as we have already stated, and that the value of the determinant is
unaffected by the operation. Continued differencing by columns is strictly analogous,
and need not be separately described. Continued differencing by rows and columns
is performed by applying the two separate operations successively, the order being
immaterial. Without alteration in value, the determinant is thus changed in form

from V (f,,) to V (4,.f.), where (¢f. (5:28))

<529) é‘rsﬁs = é\rO (&):.ﬁs) = 803 (8r0 rs) = zz

m=0n

2 (=1 Co Cos s
=0

In the case of determinants which are infinite in both directions, the operation of
continued differencing by rows and columns is effected by applying the process
described above to each separate quadrant ; thus the differencing by rows is performed
by differencing outwards from the centre row in both directions (above and below),
and likewise, by columns, both to right and left of the centre column. Neither of
these partial operations, nor the complete process, alters the value of the determinant,
a fact which we may express by the equation

(5°30) V{(f) =V (8ufe) =V (8ufr) =V (8ufn),

where the notation is similar to that used in the former case. There, however, 7, s,
and consequently also m, n, were necessarily positive or zero, while our convenient
notation for determinants of the present type involves also negative values of » and s.
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In order to make the former definitions of 8, &, §,, applicable to this case, we must
adopt certain conventions as to the interpretation of (5:28), (5'29), to allow for negative
quantities. These conventions are (@) that in ,C,, ,C, the positive numerical values
of » and s, m and w* are to be used in all cases: and (b) that »—m and s—n retain
the same signs as » and s respectively even when m =7, n =s. The latter rule
preserves, in relation to f,,, the distinction between +0 and —0 which in certain
cases we desire to maintain.

(e) A Symmetrical Expression jfor i(a,-—a_,).
0

In discussing = (a,—a_,) it is convenient to change our notation for V,(a,,)
writing it in the form V (,@,,) to denote the determinant whose (m, n)" element is
Omn 1f we define ,a,,, by the equations

(5'31) ra’mn E amn (m # Ir): ra’rn = 1> ramo = ram,~0

we make V (,a,,) identical with V, (a,,) as defined in §5 (b), and therefore, by (5°21),

. —_ v (()a’mn) —_ (ra’mn) .
(5°32) oty —0_y = V(o) a, = V(a) (r # 0).
By applying the operation of continued differencing by rows to V (,a,,,) we transform
it into V (8,, ,..,), where &, ,a,, is defined by (5°28) (putting f,, = ,&,.., and making
no distinction between f,, and f, _s—cf. the third equation of (5'31)). Now it is
readily evident that

(533) 3On.ramn = SOna'mn (m # Ir)) 807;.7‘“7‘11 = O (’I’I/ # 0)’ 300.7“7’0 = 17

s0 that V (8,,.,@.,), and consequently, also, V, (a,,,), is equal to V', (,,.,,), this being
defined as identical with V (4, a,.,) except that in the r** column the central element
is unity, while all the others are zero. Hence V/, (8,,@,) is clearly equal to the minor
of the 7 element of the central row in V (§,,@,.,). If we replace the elements of this
central row by +1 (m>0) or —1(m <0), and denote the result by V' (3,.,.,), we
may evidently write (¢f. (5°32))

—_ — V, (30namn) — v, (30na’mn>
=) = 00 Vo)

(534)

OMQ

by (5°30). .

We next apply to V (8,,¢,,) and V' (3,,a,.,) the operation of continued differencing
by columns, so as to transform them into V (4,,%.,) and V' (8,,@,,). We make one
slight difference of rule here, as compared with the former differencing by rows : that
is, in (5°29) we shall preserve the distinction between m = 0 and m = —0, writing f,

* The signs of m, n are the same, of course, as those of r, s respectively.
X 2
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for the elements of the central column in V or V/, and defining f_,, as equal to —f,,.
This means, in effect, that the elements of the central column are to be reversed in
sign, for the purpose of differencing on the left (in <0).* Now, by definition,
V’ (804, differs from V (8,,a,,,) only in the central row, for which

Jw=1 (m>0), Jw=—=1 (m<0), andalso f,=-1,
so that
SuaSwo =0 if m 0, oS = 1.

Hence, when transformed into V’(8,,,.), it differs from V (§,,a,,,) only in the central
row, all the elements of which are zero except the central one, which is unity. In
other words, V' (4,,2,,) is the principal minor of V (4,,#,,), and the expression for

@
(e, —a_,), viz.,
0

z V' (8, n) o
585 S (a—a,) = gpomdml — _ Zo
(535) > a—ar) = (Suttn) AN
has thus been reduced to a concise symmetrical form.

(f) A Symmetrical Expression for 8.

It appears from (5°21) that
y o 0 ,
B [ A1>\2 V (bmn)

where V, is the same as V, except that all the elements of the central column are
unity save the central one, which is zero. If we transform V and V, by the operations
described in §5 (d), differencing by columns with m = 1 (for the right) and m = —1
(for the left) as starting points, and similarly for the rows, we leave the central
column (not enumerated by m) untouched as regards the first part of the operation,
and the central row untouched by the second part. Thus we obtain the result

V,0 (3mnbmn)

(5.36) BO = —-7\1A2 V((?m”b”m) ’

where V (4,,,0,.,) is the determinant whose general element is 4,,,5,,, (+ m, +n ranging
from 0 to =), and which has a central column §,,b,, a central row 4,,b,, and b as the
central element. Irom this determinant we obtain V’;(4,,0,,) by substituting zero
for all the elements of the central column except those next to the centre on either
side (n = + 0) which are replaced by unity.

¥ We may note that the elements of the central column are the coefficients of o in (5°01)~(5°05), while
the elements reversed in sign are the coefficients of «_q. '
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(9) Symmetrical Expressions for %fr(ular+u2a_,), 2 (nB,+v.B_,), > (vy, +vay_p).
1 1 0
As in §5 (e) we may prove that
® v, (4
?’r (VIOL,.“I-VQa_,.) = V()((g()o:g::)) ]

where V,(8,,0,.,) 15 identical with V (8,,4,.,) except in the central row, the elements
of which are equal to 7v (r > 0) or 7, (r < 0), the positive numerical value of = being
taken in both cases. On applying the operation of continued differencing by columns
we obtain the result

. i Vo (8 nrn)

53 = Y0 \9m%mn)

(5°87) 217' (o, + v _,) V)
where V,(3,,,0,,,) differs from V(3,,0,,) only in the central row, all the elements
of which are zero save those on either side the centre (» = 1 and » = —1), which are
respectively equal to » and v, This follows from the fact that

Sr=0 (r#1), Sr=1 (r=1).
Again, from (5'21), we may prove in the usual way that

18 _— V—r (BOnbmn)
T V (SOnbmn) ’

where V, and V are the same, except that in the ™ column of V, all the elements are
zero save those on either side the centre (s.e., n = + 0) which are unity. If in
V and V, we add half of each of the rows n = + 0 to the centre row, and subtract
this new centre row from the rows n = + 0, V becomes transformed into V (38,,',..),
where ¥',,, = b,,.., except when n = + 0, while

(538) b,m() = ?JZ (bmo_bm—o)—bm: b/m-—o = % (bm—o—bmo)'—bma b,m = bm ‘*‘,‘]z_ (bm0+bm_0)-

Similarly, V, becomes transformed into V,(8,,0',,), identical with V (8,,0',.,), except
that in the #** column all the elements are zero save the central one, which is unity.
Consequently we may write '

3 YV, (800
2 (8,40 = Ll

V (SOnb,mn)

where V, is the same as V except that in the central row all the elements on the right
of the centre (m > 0) are equal to », all those to the left (m < —0) are equal to »,
while the central element is zero. We now “ difference ” by columns, with the result

. | - —_ v() (é\mnb,mn) _
(5 39) 21 ('ﬁﬁr'*"’:%ﬁ—r) - v (Smnb/mn)


http://rsta.royalsocietypublishing.org/

I \
A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)
A

a
\

/
S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

144 DR. S. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE

The general element of V is d,,0,, or §,,0',,, which are the same except when
n = + 0; the general elements of these two rows are 8,00, 8,_o®'m_o (cf. (538)), the
general elements of the central row and column respectively are 4,0, and d,,6,, while
the central element is b. From this we obtain V, if we replace all the elements
of the central row by zero, except the two on either side the centre, which are
n(m = 0) and », (m = —0).

Finally, we may prove that
v, (3mncmn)

V (3usn)

where V is defined as usual (+m, +7 ranging from 0 to »), while in V, all the
elements are equal to the corresponding elements of V except in the two central
rows (n = £ 0). In the row n = 0 all the elements are zero except the central two,
which are » (m = 0) and »,(m = —0). In the row n = —0 the general element

18 Cp_o= Conor

(5 '40) % (Vl‘Yr'*’ ”27-—1‘) =

§ 6. Ter CoMPLETE SOLUTION FOR MAXWELLIAN MOLECULES.

In the case of Maxwellian molecules, #.e., molecules which are point centres of force
varying inversely as the fifth power of the distance, the solution reduces to finite
terms. This arises from the fact (¢f. §9 (C), ‘ Phil. Trans., A, vol. 216, p. 323) that
for such a law of inter-action the functions ¢, y, x are independent of y, with the
result that for all values of ¢ we have (cf. (4'25))

(6‘01) ]Ct =1, ktu = ]cona i ktw = k0]27 'Ictzz = ]5022>
and consequently, |

8 8
(6:02) %SCM‘“/AJ@ = %sotﬂls—tﬁ‘; = (w+p) = L

From (5°12)—(5'14) and (4'27), (4'29), with the aid of (6°02), we deduce that

. mMm
(6 03) Gy = Olgg = Oy = 37 m]_li_/n; 7\1>\2V0A0K/12 (O))

independently of the value of 7 or s. From (5:21) and (8°18) we consequently have

1 o/ o o
6°04 =0 (r#0), a—a,=——=—20 0y = %o,
( ) oy ( # ) Oy—0_g on >\17\2, oy N oy s

I
|
|

Again, from (6°03) and (5°16), (5°17) we conclude that b, = 0 = b, for all values
of +7, +s from 0 to ». Hence, by (5°36), or more simply from (521)—since
in V,(b,,) all the elements of the central column are zero, instead of all except one,
the central element, as in V—we have

(6°05) B8, = 0.
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Also in V (b,,) and V,(b,,) we may in this case omit the central row and column, all
the elements of which are zero (if » # 0) except the central element, which is the
same in each (b); we suppose that this is done, sothat V and V, become determinants
which possess no single central row or column, just as with V (c,,). We will consider
the two central columns of V (b,,,) and V (c,,); corresponding to m = + 0. We have,
by (5°12)—~(5'18), (4'35)—(4°38), and (6°03),

1B 1

(6:06) $>0, by = AR

( A, 541 Uy, s+1)

4
= 6677;?{1 ByK"12(0) {1+ 5puavy (Baas” + ” + puaokins”)

(6.07) s <0, b——Os = %[;7;”112]3 K, ( ){V2+ Sun (3M22+ /’«12+§M1,U~2k120)}:

(608) >0, by == {gEpt B (0) s’ (1+¥h:),

(6.09) - S < 0: bOs = ﬁ%t%l B K, ( )#12["2 (1 +%k012)’

(6'10) §>0, Cos = 1537r0 Kllz( ) [3V1k110+2/u2)l2 (10;u] +3,u.2k120)],

(6'11) §>0, C_o= 353 27"#-2”20 K’ 12 (0)( 10M1+3M1k120):

32

153 2'71'1“1"1C K’ 12 (O) ( 10u,+ 3#2]512 )

(612) $<0, ¢ =
(6°13) § <0, Cg= ‘1‘3—52‘3*7"00Kri; (O) [3V2k220+2/’«1"1 (10M2+3ﬂ1k120)]?

All these quantities, it will be noticed, are independent of s; thus we see that in
V(b,,) and V(c,,) the elements of the two centre columns take only four distinct
values, all the elements of these columns which are in the same quadrant having
the same value.

By using the method of differencing. by rows it is easy to prove, as a consequence
of the property of V (b,,) and V (c,,) which we have just established, that

(6°14) B, =0 (r>2 r<—2), v, =0 (r>1,r-1),
while (¢f. (6°05), (6°14), (3:14)),

. C_00—C_o-0 — Coo—Co—o
(6'15) Yo = » Y =
€ _00Co—~0""CooC 00 CooC—0—0—Co—0C_00
b_o_0—b_g 00— bo_o

(6.16) '80 - Oﬁl - b._oobo_o"'boob_(;—o’ B—O B -Bd a bo-ob-ao"boob~0_0'
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Consequently, in the case of Maxwellian molecules, F (¢?) and H (c?) each reduce to
their first terms, while G (¢?) reduces to two terms only, the solution being quite
finite.

§7. TaHr GENERAL SOLUTION WHEN m,:m, IS VERY LARGE.

When the mass m, of the heavier molecules is very large compared with that of
the lighter molecules, so that m,/m, may be supposed zero, an exact general solution
may be obtained in simple terms. This was first proved by LorENTZ* in connection
with the theory of electrons. His method is much simpler than that of this paper,
from which, however his results may, with little difficulty, be deduced as a very
special case. The deduction will be described in some detail, since the knowledge
of the exact solution throws valuable light on the com?ergence of our successive
approximations ; it also leads to an expression for = which is of interest, as being in a
form which, so far as my knowledge goes, is new.

We suppose that the effect of collisions between the molecules m, is negligible, so
that pyy and p',, may be omitted from our calculations; if the molecules are rigid
elastic spheres of radii o, : o, this amounts to the neglect of «?/o? (¢f. §9 (f)) or, in
general, t0 ¢ufp,,. ,

It may readily be seen from (4'13), (4'14) that if m, = 0 the value of B*(m, n),
with whatever suffix, is zero except when k = 0, and that

Bolzm (m, n) = (2562)""”', 12 (m ’i’b) — 2m+ny2mx2n

B,
(7°01) ,
LB (m, n) = (29777, By (m, m) = 2mtngmyn,

We also require B* (m, n) to the first order in m,, as follows :—

2 1,2 .
7 02 { 1212 = dmnpu2mratin i By (m> ’i’b) = Fmnpm2" Yt
B 9121 m n) ~94;rnn M22m+ny2(m+n—1)m2’ B11221 (m’ ,n) = 4mn ,u22m+nm2my2n'

From these, by means of (407)-(4'12) we deduce the following expressions for
p (7, s), p' (7, 5), retaining only the terms of highest order :—

(7°03)  pu(ms:) = $rvmoms2 (2rs+r+5+3) (r+s+ F)rasK iz (O),
(7 04) P12 (7‘281) = _%TV1V2I“12T+S (/"+%)r+l (S +%)ser,12 (O))
(7‘05) P21 (7'132) = _’%TV1V2ﬂ22r+s (”'+%>r+1 (S +%‘)J€3K’12 (O)>

* LorENTZ, ‘Archives Néerlandaises, 10, p. 336, 1905 ; Theory of Electrons,” p. 268. A more
general form of LORENTZ'S theory is given in JEANS ¢ Dynamical Theory of Gases,’ 2nd ed., §§ 314, ef seq.
I am indebted to Mr. JEANS for pointing out the interest of a detailed comparison of LORENTZ'S theory
with this special case of my own, and in consequence I have rewritten §7 with greater fullness than at
first.
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(7'06) Pa ("”232) = $rvy 2 ("'+3 +%)r+t+1kr+tK,12 (0),
(7.07) P,12 (7‘18‘) = %‘%‘TV1V2[A22"+. (7'3 +’I’+8 +‘.%) (r+ S + %)r+:+lK’12 (0), :

Pllz (7'231) = 1‘857"”11’2#12r+s”'3(7'+”‘%)r+2 (8+%)skr+lK,l2 (O)) r>0,8>0.
(7.08) P’12(0231 = 33mvvous2’ (3+ %):4.2 ( ‘ko+136k120) K,12 (0) = P’m (Sloz)a
P,12<7'201) = $Emyivus2" (7"“*‘%)”9 —k, +5k"0) Ky (0) = p'n (017'2),

(
(7'09) Plzl (7'15‘2) = Ssmm 27Frs (""*‘%)r (3+’g‘);+2k3+1K,12 (O), r>0,8>0,
(7'10) Plzl (”'232) = Femuym 2Tt (”'+ S +‘%>r+x+ak1;+'+l K’u (0)

For the particular values of » and s there dealt with, the expressions (426)-(4'84)
reduce to the above in the present special case, as may readily be verified.

We now substitute from (7°03)—(7°10) in (5°12)~(5°20), retaining only the terms of
the highest order, and neglecting quantities of order m,':m*; the result is as
follows :—

(7'1 1) §>0, ay = EZ'T""MAzVomlM:erKIm(O) = Oy, <0, | Ay = EATW)\lszomszoch,u(o),

(7.12) r>0,8>0, @,= m“‘anPu (74131):
Yo

: = —2 | ﬁj‘_s_‘lf_z)rw K/
(7 13) r<0,s<0, Ay = TT7r>\1k2Vo'm2M1A ( +7) (8-}-1;) kr+: 12( )
(7'14) , ("' <0, s8> O)’ Apy = _i;TTA1A2VOMQM1Aoer’12 (O),
(7'15) (7'> 0, s << 0); Qpy = "2277")\17‘2V0m1/*2A0ksK/12(0),
(7.16) (7‘ > 0), br = O, b AORaQO, —ZTRA AzVle,(LzB %K’]g( ) (’l"< —0)-
(717) (s>0), b, =0, b, = 2&7 RxlxzyommB @-Si— K’ (0), (s<—0),

(7:18) (r<=0,8>0), b,=0, (r>0,s<=0),

. . 1 1
(7'19) (r>0,s>0), b, = X 12,,% Az By D) (5+1)

{(S::l-t;?j‘)i‘ﬂ; r+a+2“‘kr+1"' k:+1 + 1} KII? (0)
P 2

Since, by (7'14), (7°15), a,,(r <0, $>> 0) is independent of s, and a,, (r>0, s <<0).
is independent of 7, it is readily evident that in the alternate quadrants of the
determinants V (8,,0m) a0d V’ (8,,,%s) all the elements vanish. Hence each V becomes

VOL. COXVIL—A. Y
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equal to the product of the two remaining quadrants; in the positive quadrant the
determinants are the same (>0, $>0). Consequently in this case (5'35) becomes

: - 27 D,
(7 20) oy = AIA‘A‘ % (ar a—r) - 271_"0'm’2£¥.):K/12 (0) D
where D is the determinant whose general element is
(7:21) Sty = 9, ﬂs*? ree >0, 5> 0,

(r+3),(s+3), "

and D, is its principal minor.

Similarly, it follows from (5'36) and (7°16)—(7°19) that 8/, can be likewise expressed
as the quotient by an infinite determinant (covering only a quadrant of the infinite
plane) of its second minor, as follows :—

iy r_ 27RA, D,
(7:22) o= 2myymyB,K';; (0) D'

Here D’ is the determinant whose general element d,, is given by

: _ L[ (r+s+4),., N }
(728) (»r>0,s>0) d,=28_,., e W ewir Y kpypo—lop—k,+1

—_ (’)‘+8+—2-),,i, k
“(r+3), (s+3),

(7:24) P>0 dy=dy = b (k1) = ?173,15, dy = 1.

Thus it is the same as the determinant D of (7'20) except that the »** row and
column (r>1) are divided throughout by ». The determinant D', is the second
minor of D', z.e., the minor of the next element to the centre in the first row or
column.

Again, from (5°87), we may prove that

27 v, D,
2avm,A K/, (0) D’

(7'25) 2 (nay+me_,) = —
1

where D, 18 the second minor of D just as D’y is of D’. It is easy to see that*

: D, _ Dy
(7°26) D=
Likewise, from (5'39), we have

27V0 ) D_”l“
27rv1m2BoK/12 (0) DI, ’

¥ (. the footnote on p. 154, indicating that Xr (v1a, - vea_,) is, quite generally, a mere multiple of /3.

(r2r) . =, +nBL) = —
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where D” is the determinant which is identical with D’ except in its first two rows
(for which ¢f. (5°38)), while D”; is the minor of the second element in the first row
of D",

§8. THE GENERAL SoLuTION FOR THE CASE OF SIMILAR MOLECULES.

Another instructive and -specially simple particular case is that of a gas composed
of two sets of molecules whose mechanical properties—mass and mode of inter-action
during encounter—are identical. In this case all the symbols which we have
distinguished by the suffixes 1 or 2, to indicate reference to one or other molecular
group, now have the same value for either suffix, with the exception of v, v, or Aj, A,
which denote the numbers or proportions of the two molecular groups. Moreover
(¢f. (4°01)~(4'04), (4'07)—(4'12), or, for a simpler and more general explanation, ¢ Phil
Trans.,” A, vol. 216, § 7 (H), p. 309), we have '

1 1 1
(8'01) ] P11 (”'131) = 3 P22 (7'232) = ;‘5 P (7'> 3);

1 2 0

(8'02) P12 ("'131) +p1g (7'231> = P2 (7'232) +pa ("“1'5'2) = AAgp ("'a 3) P12 (7“231) = pa (”'132);

1 ; 1 1
(8°03) S (rs) = =5 0'm (108) = =59 (7, 8),
: ” vy Vo
(8.04) P,w ("'131) +P/l2 (”'231) = P/21 (7"232) +Pl21 ("’132) = >\1A2Pl (’r, 3);

where p (7, s) and p’ (7, s) are defined by (8°01) and (8°03).

By means of these relations we may reduce the expressions for o, and 8, to a
much simpler form. Our operations may be performed on the actual determinants
which express the general solution, but they could, of course, be equally well described
as transformations of the general equations (5°08)—(5°11).

First considering V (3,a,,), we add to the m®™ column on the right (m > 0) the
corresponding column (—m) on the left of the centre; the new element on the right
18 now given by the equations

(8.05) (m > 0’ n > 0) gmn (amn+a—mn) = m A-O(;mnNmn {Pll (’rnl'nl) +P12 (m]nl) +P12 (msnl)};

Vo

= _?Z.b A()amnNﬂm (A{2‘+‘ >‘1>\2) P (m’ 7’1/)

Yo

= >‘l ’r_r"/ A-OgmnNﬂmP (ma ’ﬂ),
Yo

(8.06) (m > 09 s < 0) smn (amn+a’—-mn) = _>‘2 ym AogmnNmnP (m7 'ﬂ).

o
Y 2
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We next add A,/A, times the n'® row (n > 0) to the (—n)* row; the elements of
the negative rows (n < 0) thus acquire the following values :—

(8‘07) (m > 0) n<\0) 6mn {amn+a’—mn+ ;’}’g(am-n“!—a—m—n)} = O aOO = - ;m— A—ONOOPI‘z(OlOl)J
1 0

(8‘08) (m <\ 0’ n < O) 877"1 <a’mn+ —;2 am—-n) = Z)} AosmnNmnpl2 (TISI)'

1 V1

These transformations do not alter the value of V (8,,a,,), nor of V’(4,,a,.,) when
applied to this determinant, which continues to be identical with the principal minor
of V in its new form. Since in each of these determinants the elements of one entire
quadrant (m > 0, < 0) are all zero, they may be expressed as the product of the
two simply infinite determinants formed by the quadrants (m > 0, n > 0) and
(m <0, n<0). The former quadrant, however, is the same for V and V’, so that
(5°35) may be written (after a little reduction*®) in the form

- 27 v
809 b= N 2 (e —a,) = - s
( ) ) 12 o (a,. a.__,.) WVOmA-{)KIH% (0) Vo ’

where V’; is the principal minor of V,, the general elements a’,,, of which is given by

the equations ’ -
i : 27 py3 (m, n)

810 & = S el ,

( ) a2 (M) 0 (04300 K2 (0)

8o that

(8.11) R aIOO = 1 a/mO = m02_m % mOt.kt = a/0m°

Here, since m, = m,, the equation (4'08) takes the special form

(8'12) P12 (”'131)

= 18 ﬁ e~"‘"1”x"g/2”1‘28+1 [¢* (y) {B*(r+1, s> +B (r, s+1)} + 290" (y) B (r, s)] dx dy,

whence it is clear that V,, and consequently also &', is independent of the ratio » : »,
(¢.e., », and v, occur only in the form v+, or ).

It may readily be verified that a cdrresponding calculation in the case of V (4,,0,.,)
leads to the result ' '

(8’13) B = 0.
In the same way we may determine the particular forms assumed by (5°37), (5°39),
and (5'40) in this special case.

* This reduction chiefly consists in cancelling out factors common to all the elements of corresponding
rows of Vg and V.
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§9. FirsT AND SECOND APPROXIMATIONS IN THE GENERAL CASE.
(@) General Remarks.

In the general case there are no such simplifications as have been described in §§ 7-9,
and for practical numerical purposes we have to be content with successive approxi-
mations to the complete solution, The approximate formule become increasingly
complicated with each successive step, however, so that it is fortunate that a first
or second approximation generally gives a close approach to accuracy. In the theory
of viscosity and conduction in a simple gas (‘Phil. Trans.,” A, vol. 216, § 11, p. 334) .
it was found that a first approximation gave a result not more than 2 or 8 per cent.
too small, while the error after a second approximation was negligible. In the
present theory of a composite gas the error of the first approximation may be much
larger (up to 13 per cent.) in extreme cases where the masses, densities, or diameters
of the two sets of molecules differ widely (¢f. §7). Such a case is worked out to
a fifth approximation in § 13 (e), and as this is one in which an exact solution
is possible by anéther method, the results there obtained throw much light on the
general character of the convergence of our analysis. It would seem that (as in the
previous memoir just cited) the successive approximations form a monatomic sequence,
the first and second members of which give a good indication of the accurate limiting
value. If the difference between these two members is about 2 per cent., the
additional correction due to all further approximations is about % per cent., while
if the difference is so much as 8 per cent., the further correction is about 4 per cent.,
the additional correction being in an increasing ratio to the first difference as the
value of the latter rises.

In this paper we shall not go beyond a first approximation in the general case,
except in regard to o', where we shall stop at the second approximation. ‘

(b) First Approximation to o

If in our set of equations (5°08) we neglect all save the central one, and consider
only the central term of that, we get the equation

(9:01) A (@g—a_y) =1, or aya/y = —A\,
By (5'12) and (4'27) we have
. 2y Man’ (0)

902 = A WolloyTivg AN 12 .

( ) Qo ° 27y, (m1+m2)

It is convenient to choose A, (which is quite arbitrary as yet) so as to make

(9-021) Uy = 1,
so that ‘
(9.022) ' Ao 27 (m, +m2)

- 277A1)\21’0m1m2K/12 (O) ’
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and so that the equation for the first approximation to «/, becomes (with this value
of A,)

(903) oy = — A\

(c) Second Approximation to o',

We may conveniently obtain our second approximation by means of (5'85), taking

the three rows and columns of V and V' which contain a, in the centre. From

- (5°12)—(5"14) it is easy to see that the elements have the following vatues (when
Gy = 1) :—

(9'O4> Sty = #2(701—1) = J)y, = Py, 8«)—1“0—1 =y (kx_l) = ‘“8_10(1_10 = — Py

(9.05) Snan = {%ﬂlz““#z‘z (1 "‘2/"‘1 + gkz) + ‘285‘/‘1,“«2]5120”'”223 ;l;‘i‘ kuu} = Pu,
okha
(9°06) S, =— {%/‘2”‘#—12 (1 =2k, + Thy) + s5mmakers” + % ;y_;’ kzzo} = —Pa
10
(9'07) S = =0 0y = mpy j{‘l?)l;—2k1+%k2_§§5kmo} = —P

Consequently, the third-order determinant for V is given by

(908) — i P P1 Pn " = —{pu’' —PuPur—20: PPt Pupy + Pupi’} = o5l
| p: 1 p ;
P2 P2 P J
and its principal minor by
(9-081) - : P Pn | = — (P’ ~Pupz)
J P2 Pre '

It is easy to prove that
1

ViVy

(9.082) (p122—p1]p22) = ‘_‘2’1'5‘ (d1V12+ 2d12V1V2+d2"22): ’
where

1
(9.09) d1 = ;‘ kno {“152‘ (1 "'2,“1,“2) +%§M1#2k120“‘2 (.15 + 2]51 "“%kz) //'12}9
2

1

;1‘ kzzo {‘152‘ (1 - 2#1,“2) + ?]Z‘sb'ﬂl/‘2]‘7120 -2 (% + 2]‘71 - % kz) /‘22} >
) .

(9'10) d,

1

]

T+ § (1= dpuggas) (1 — 2k, + Thy) + Buypuokny’ (35— 2, + Tky).

(9'11) 2d, = 5%
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Also
(9°12) 0 —papi—papi = — BT 45 0p )
P1PsP12—PuPs — PP 250 Wi+ 2059vivs+ 09057 ),
V3
where

(9.13) bl = 2#1#12]5110, bz = 2#2/‘21]‘72209 2b12 = 30 (1 _4M1M2)+ 8M1ﬂ2k120~

A A

OF

A

Consequently, 1if we write
. 2pﬁ02p12—]0up2 —10221?1 g bw® +2b1vvy+ bovy?
( ) plz —PuPe ( ! ) A+ 2d vy + dyvy”
we have, as our second approximation to &, by (5'85),
. 1
(9°15) oy = —ANy ——
1 —€
We may note that
(9'16) Al = ;};— {d1V12+2d12V1V2+d2V22)“(k1—1)2 (b1V12+2b12V1V2+b2V22)}
1Ve
1 2 2
= {al”l + 2 vy t+ Qgvy },
ViVe
where
(9'161) = ;‘kn {%Mz — My (k -" )+2§l’«1#2k12}
2
(9.162) Ay = ; kzzo {%MZ—MQ (klz_%k2) +285M1/‘2k120},
1
(9.163) (5612 = d]z-(kl'—l)z b12
The determinant V, (8,,@,,) of (5'87) is, to the same order of approximation as for
V (8,s%mn) 1n (9°08),
(9'164) — | Pz P Pu l pzpu P1p22)+”2 (]011012—2022?11) =95 (k 1)51
Va O 131 ‘
D22 P2 P
where

(9‘17) e = 30 (V1M3+V2/‘1) (Ml _ﬂz) 8:“«1#2]9 12( “Vz) +2 (Vh“lzk 11~ Valegy 22)

OF

Hence we have, as a first approximation,
(9'18) $ 1 (ma, +ma_y) = =t
1 Al
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(d) First Approximation to 8, and = (nB,—w_,).

In this case, owing to the fact that the central element in the numerator
determinants of (5°36) and (5'89) is zero, we have to deal with the third order

determinant in order to obtain a first approximation.
to see that V (4,,b
three central rows and columns, if we replace a, by A{,R
bottom rows respectively by A; and -2\,

obtained from V (3,,0,,) 18 equal to —45——

A \AR
similarly (¢f. § 5 (f) for the definition of this determinant),
. BO>2 Pz Ppu | 1 <B0>2§
(9:19) <A0R " 1 N | Ao AR { P n Pu
p: 0 p P 0 p
%g 1 %} . } DPa v Pu
by (9°17). Hence, by (5°36), we have
(9.20) By = — '&)B“ ki1 AAge = — AR Ay % r (an-r"’ ”2"3"-r)=u<
Bo VAN Bo Vo 1
by (9°18).

Again, the determinant V,(3,,0,,,) defined in § 5 (g) has the form

o) | ) B2y
921 1[412 22 1 M2y 11
(921) <AR APV A WA ™

Vy 0
_1(Pr2 _ﬁ2~2>__ __1<__1_&>_1 _1{Pn
2<)\1 A/ P z Ay Ay 2<7\1
— Bo >2‘
= <A0R Py ! P
Vg ) O 151

Dz _ P2 Pr_ P2 Pu_Pe
Ay Ag Al A AL Ao

k—1 <B0

25A 7\2y0

P _
AZ,) b
vy
~L)-p

B 2
= - ;:,'fj; <A)‘_‘QR‘> [Vlz (‘P22 "‘2022) +2vy, (1012 —201192) +v)f (]711 “Pl’)]

— Yo Bo > [ Jaa! 2]
= — — o+ 20& =0
2 <A0R, T gl 1201Ve Tors? 2V 1

AR

From (5°15)~(5°18) it is easy
.») May be obtained from V(émam) each being limited to the

@y, and divide the top and

Consequently the third order determinant
L <B ) A. The value of V/,(3,.5,,) is

3

* This last equation, here proved true only by comparing the first approximations to [, and
2r (may+ vec_,), may easily be shown to be strictly accurate, by comparing the general expressions for

these quantities.
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where a, and a, are given by (9°161), (9°162) and o/, by

0 0
(9°22) ay = Mxﬂz{ =k + Fhy— sk’ +75( St Zcﬁ>}
\ Mg My

Consequently, by (5'39), to this order of approximation we have

. < 25A,R
(9 23) ?(V1,3,+V2/8_, = Z—BZIT{/CHO(IIVI +2a oy + k220032v2}

(e) The First Approximation to = (vyy,+vsy_,).

The two central terms of the two central equations of type (5°11) are’

' 67 5v
924 {1+ kil 4y X —R&° } o (L=3k") = ! ,
( ) Yo T%ﬂ-zl 12 ’2‘() Vo oty n{—vy 0( “136 12) 87r1/1v2,u1,u200K’12(0)
67 5v
9°25)  —y, (1 —4%k,°)+ 1+ ks’ + "} = 2 ,
( ) VO( 136 1 7= OJL 136#12 12 ?}6 Vi MM 87"V1V2M1M200KI12 (O)

which lead to the result (equivalent to that obtained as a first approximation
from 5°40),

S 1125 Cyvy 4 20, 0vs + Cove?

9'26 cs tvy,) = 1M1 19V1Vs T Coly ’
( ) i (Vly Y ) 27"Kl12 (0) ke + 2]01200’12"1"2"”236"722002"22
where

(9'27)> (9'28) ;=1 ‘*'”136/*12k120> Cy = 1+'130"M21k120,

(9'29) Crp = 1—1%k120+7£36 ﬁ (k110+k220)1

1M2

(9'30) ¢y = =145 — L Ay ]?2 .

' MMk ]CJ2

A second approximation would replace the right-hand factor in (9°26), by the
quotient of one quartic homogeneous polynomial in », v, by another, and similarly each
further approximation would increase the degree of both numerator and denominator

by 2.
(f) Values of K';,(0) for Partvcular Molecular Models.

In connection with the above approximate formule, and their subsequent
applications, it is convenient here to write down the values taken by K';;(0) and the
other constants k, when certain particular characteristics are attributed to the
molecules. ’

VOL. CCXVIL.—A. Z


http://rsta.royalsocietypublishing.org/

N
I \

a4
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

156 DR. S. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE

When the molecules are regarded as rigid elastic spheres of radii oy and o, it may
readily be shown (¢f. ¢ Phil. Trans.,” A, vol. 216, § 9, p. 320) that

. ’ — 3 MYy +m2>v’
(9 31) K]Q(O) - 4(0’1+0’2) <hmlm2, 3

( 2 \ 2 ¢ ) ‘
(9‘32) kz = t+2)t kut =< = > kl?t ]f'gzt :( o > kl?t ]Cmt = —5~-t+3 b+l

(t+%), o1+ 0oy o1+ 0 ° (t+5)

When the molecules are point centres of force proportional to the inverse n'*
power of the distance, the force at unit distance being K,,mm,, 1t may be shoiwn*
that

' P 2
(933)  Kiw(0) = 2T () (22 7K, ) T (3L ),

P My + My n—1,
where '
(934) C L(n) = 4n j sin? 30 . « da
and
(9°35) - r—0 = 2}“ d

0 1.3 2 <i>""l‘[ ?
V{l 7 n—1\e J(
n, being the root of the following equation in »:

‘ n—1
(9°36) 1—y— —2—<i> = 0.

n—1\o
Further,
o 2 \
I‘<t+3———f—> F<t+4~—-——
(9.37) kt — n—1 kmt =5 n"‘l) Ig(n),
()7 (3 -2 -+t (3-25) B
where
(9°38) T,(n) = = j §in? 0 . o d.
. 0
Also
2 2
(9°39) okt (B e R (—%} ki,
12 B §%7

where K,;, K;, are the force constants appropriate to a pair of molecules of the first
or second kind respectively ; we here assume that the law of variation of force with
distance is the same whether the molecules are like or unlike—if this be not so, » must

* (f. ¢ Phil. Trans.,” A, vol. 216, § 9, p. 320, or JEANS’ ¢ Dynamical Theory of Gases’ (2nd edit.), §§ 305
et seg. 1 have adopted the notation of the above equations in order to facilitate comparison with the
corresponding equations in JEANS’ treatise.
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also have suffixes 11, 12, or 22, and the formulse (9°37)~(9'39) will need to be modified
in a manner sufficiently obvious. _
When n = 5, 7.e., when the molecules are Maxwellian, it is clear that

(940) K, (0) = 2= T, (5) [Koy (s 4 m, ]
. I, (5)

9°41 = t — 522\9)

( ) kt ‘ 1 k12 5 Il (5)

§10. Tae EquATioN oF DIFFUSION.

(@) Definations of the Various Coefficients of Diffuston.

In our analysis of molecular motions (§ 1) the rate of inter-diffusion was expressed
in terms of %/, which is defined by the equations

V1V2 (’u1 - U2).

(10.01) (V1+V2) u/o = 131 (Ul—uo) = =V (U2_uO) =

VitV

Further, by (3°15) and (2°06), we have, as the equation of diffusion,

1 o\ m/y 0 oT
. P 1A (2 %o X e 9P +3B,8, —
(10°02) , wo ° °<2h x *ym, 8x> 0%

Hence it appears that the agents effective in causing diffusion are (taking the
terms of this equation in order) a concentration-gradient or variation in the relative
proportions of the two component gases, external forces of unequal amounts per unit
mass of the two gases, and variations in the total pressure or the temperature of the
composite gas. ‘

When the pressure and temperature are uniform, and the external forces are such
as to make X', Y/, Z/, zero, diffusion can take place only if there is a variation in the
relative concentration of the component gases. In this case we may compare (10°02)
which now has the special form ‘

‘,18_?\19 1 ;1 on 1 ;1 O,

. ro__ 1 = _ 4 . OVg
(10°03) wo = dAwo op 9, "0 20 9, **° 2k 3a’

with the ordinary equation of diffusion

(10.04) Vou/o =y (’u1-‘u0) — “Dlz% Vs (ug—-uo) = —Dm%;'f,

where D,, is the coeﬂicient of diffusion. By comparison we have

(1Q'05) D, = —3A,RTd,.
z 2
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When the pressure, temperature, and composition of the gas are uniform, a steady
motion of diffusion may be produced by equal and opposite forces + (¥, X'o, 1, Yy, 1,2/
per unit volume on the two components. This will be termed forced diffusion, and
we define the coeflicient of forced diffusion D', by the equation -

(10°06) | wy = Do X,

so that, by comparison with (10°02),

(10'07) D,IZ = ‘—‘%‘ ‘%" Aoalo - ‘%)1—‘ DIZ'
0 0

From (10°02) it is clear that diffusion will occur also when the relative proportion
of the two gaseous components is uniform, and in the absence of external forces such
as might produce diffusion, provided that the pressure or temperature varies. If we
define coefficients of thermal diffusion D, and of pressure diffusion D, by the
equation :

: D Ldp_p 1T
(10 08) uo"‘—D po ax DTTaw’

we have, by comparison with (10°02)

) m/ my,  m/
(10 09) Dp = —§A.0 ]’)’Zmoo = —3ARTd/, Ef = 'nj‘;oDlza
(10°10) Dy = —4B,8,T

(b) The Equation of Diffusion.

If we now substitute the various coefficients of diffusion in the equatlon of diffusion
(10°02), this becomes

(10°11) D, XN, x 4D, L _p LT

. b 0w T
In later sections, when we consider in detail the values of the four coefficients of
diffusion, we shall see that they are all positive (the molecules 1 being the heavier—
¢f. §1).% Hence from (10°11) we deduce that the direction of diffusion of the heavier
component of a gas is (@) opposite to the direction of increasing concentration (b) in
the direction of the diffusion-component of the external force (¢) in the direction of
increasing mean pressure and (d) opposite to the direction of increasing temperature.*
This is fairly evident as regards () and (b). In case (c), the sign of D, is the same
as that of m/; (¢f. (10°09), D,, being always positive), which is a multiple of m,—m,;
the physical reason is also not difficult to grasp—under the influence of a difference
of pressure both components will tend to flow in the direction of diminishting
pressure, so as to render the pressure uniform. The lighter molecules will travel

* This statement is modified, with regard to Dy, in Note E, p. 197.
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faster than the heavier, however, so that relative to the mean motion the heavier gas
will be diffusing in the direction of increasing pressure. Such a process must go on,
to some extent, during the passage of sound-waves in air or any mixed gas, and will
influence the propagation of the disturbance to a degree which is probably comparable
with that of the effects due to viscosity and thermal conduction. The effects of these
latter have been examined by StoxEs, KircHHOFF, and RAvLEIGH.*

It is rather more difficult to perceive, either analytically or physically, that Dy
must be positive if the molecules 1 are the heavier (see Note E, p. 197). A discussion
of this coefficient will be found in § 14.

If in (10°11) we assign to «/, the value zero, we get the equation of condition for a
state without diffusion. Some special cases of this equation will be considered in § 16,
after the relative magnitudes of the various coeflicients of diffusion have been
determined.

§11. Tae EqQuarioN oF VISCOSITY.

The various pressure components p,,, p.,, et cetera, for the composite gas are given
by the following and similar equations :—

(1 1 .01) Pz = Vlmll—-,_15+ v2m2U;§, Py = MUV, 4+ 1My ULV,

A reference to (524) or to our expressions for f (U, V, W) in §3 hence enables us to
deduce that

1 -

(11 02) Pzz—Po = —'ﬁg 2_}‘7’ Coczz %’ (Vf}’r + "_27—7‘)>
1 -]

(1 1 03) Doy = ""6*%?)" 57& Coczy % (Vlyr + V2‘y-r)’

We may compare these with the equations of pressure of a gas whose coefficient of
viscosity is x5, (¢f. (2'11) and (2°14) for the values of ¢,, and ¢,,) :—

: e Q’v_‘o_-z.@?iq v, %ﬂ —_2
(11 04) Pzz—Po = —Kiz [2 oz 3\ 3w + 3y + 2/ = 5K€19Ces
(11'05) p{y = K2 <%%) + %’%‘/g) = ""':%"flzczy‘

It thus becomes evident that the composite gas behaves like a viscous fluid whose
coefficient of viscosity is given by

Q

(11°06) kiz =755

p = (o by ).

)
>~

* Srokks, ¢ Cambridge Transactions,’ 8, p. 287, 1845; KIRCHHOFF, ‘ Pogg. Ann.,’ 134, p. 177, 1868 ;
RavLEIGH, ¢ Phil. Trans.,” 175, p. 1883, ¢ Theory of Sound,’ II., ch. XIX,
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§12. Tae EquatioNn or ENERGY.
(@) The Deduction of the Equation.

In order to obtain the equation of energy we return to the consideration of the
equation of transfer (2°01). Having determined the form of the velocity distribution
function f (U, V, W) correct to the first order of small quantities, we can now make
the equations of transfer accurate so far as the second order, and this is necessary in
connection with the equation of energy. Also we need no longer suppose that the
mean motion of the gas (u,, v, w,) at the point considered is zero.

- We add to (2°01) the corresponding equation for the molecules of the second kind,
with the result

[ 2 00 @@ (0}

_In j&.) ) <.§&>H -

{m, = <6 (u), * m3X2 0 (u),/)_ A(Q+ Q)
In this equation we substitute in furn Q=1,Q=m(n),and Q= Fm {(u)’+(v)'+(w)’},

thus obtaining the equations of density, momentum, and energy. Since all three of

these quantities are conserved unchanged during the molecular encounters, we have

in each case A (Q,+Q,) = 0. The first equation takes the form

9 —
(12‘01) é}(lel+y2Q2>+ 2z

1Yz

Q’_/Q 8)/0'“0 al/ovo al/ng —
T ow Ty o O

(12°02)

where we have made use of the notation of § 1. 'We will denote the operator

0 -0 0 0
éz+u0%+voé§+woaz

by r—’%h, ‘commonly known as the ‘“mobile operator”; if ¢ is any function of
x, Yzt -g—; denotes the rate of change, with respect to time, if the value of q at
a point which moves with the mean velocity of the gas. Then the equation of
continuity (12'02) may also be written in the form

(12°08) ———+<@%+%+——>=0.

The second equation, the equation of momentum, may be written as

(12°04) éa‘t (s + psths) + é%; {PIW"'M W} + é% {0 (W) (v2) + pa (w)s (vs) }

+ % {p1 (u)y (w), 4 p2 (u)s ().} — (nX,+ V2X2) =0,
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or (¢f. §1 and (11°01)) as
. ) A W} 0 2 / !
(12 05) nXo = % (Pouo+P o 0) + 3 {Pouo +2p Ut 0+pzz}
+ é% {pttevo+p's (ugs+ u,ovo) +pzy}

0
+ 5% {Pouowo +,P’0 (uowlo + ulowo) +}7u}

0 0 ow',
=1 ]I)) {mouo + (ml m2) ,0} +P/0uo< éuo + a”yo + '%)

(0P | Py ?ﬂzz) ( r Oy .y Oty ap’,,u0>,
+<ax o o) (ol SR o, Rty R

In deducing the third equation, the equation of energy, it is convenient, first of all,
to write out the following equations giving the appropriate special values of the
various quantities which occur in (12°01) :—

J— s oo 1 —
(12°06) »Q,+1Q, = Fvm, <c0’ +2 51\— Suguy+ 012> +1vm, (cng-' 2 < Sugy+ Cf)
1 . 2

= $p0o’ +p o 2w’y + 3B T,

(12'07) » (u)] Qutve(u), Qs = %o -(21‘)00002 +ploZugt’s + 3By, T) +3p' o’
+ (uopzz + vopa:y + wo_pzz) + (%Pl U 1012 + TIZ.PZU 2022) ’

(12‘08) — Xl <aa((§:) ) + % Xz <'a'%> = V1u1X1 + V2u2X3 = uou()Xo + Vou,o (XI_XB)'
2 2

On substitution of these values in (12°01), this becomes

(12°09) {Fmoes’ + (my —my) Zug'y+3RT} +§Z A (P o' t'y)

VOD

0

oy (FpUs ‘1? +3p5U,Cy")

+ 2 'a_a;(u0p21+v()pzy+ wopzz) +2

- Vozu,o (X-l - Xz) - V[)Z’U/()Xo = O.

This equation can be simplified by eliminating »Zu,X,; thus from (1205) we
deduce that

. D D duy | 3y | QW)
(12 10) VOZ’LLOXO =y, ﬁi (%’m,oco’) + 2y —Ij—t (’mq""W?/z) ’u,’g+,0’000 < éu'o + évyo + —a—z—g)

S apzz apory apxz> 1 ’ aP’ocoz
i (e P ) 2, B2
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by means of which we may transform (12°09) into

(1211)  $Ro 57 DT A (my—my) S, ]]3)"20 —10¢ ( aa“‘) + 881;0 + ag’i) —2y (X, —X,)

0 0 ) 0
+2 <pxz auo + Py a?;(; + Pz a’”’o) +2 5:; (%Pl L11012+%P2U2022) =0

In this equation we substitute the values of p,,, p,, p.. from (11°04), (11°05), et
cetera. Also we divide throughout by J, the mechanical equivalent of heat, and

replace % j—%—;by C,, the specific heat of the gas at constant volume.* After a little

reduction we obtain the equation of energy in the following form :—

e DT 8?40 oV, 8w0>__ g {< _ Du0>_< qu>}
(z12) n0, 2T +3pOOT< + 5 ) = L { (X, ) — (R, T

Voo o'y | 8w’0>
J(m1 My) Cy (8 + 5 +

{ () =G5 -1 E%))

<2P1U C +2P2U C )

mh-n

L4|I—-‘ c_(

() The Interpretation of the Equation of Energy.

We will now consider the significance of the various terms in the equation of
energy (12°12). The terms on the right depend on diffusion, viscosity, and thermal
conduction (as will be made clearer later). If we neglect the small changes of energy
produced by these means, as a first approximation (12°12) may be written

. 1 DT | 5 (0u, , dv, , dw )_
(12°13) TD: t® <890+8 T )=

where we have omitted the right-hand side of (12°12), and divided the left hand by
pOOvT'

* The specific heat of a simple gas at constant volume is jl%, if m is the molecular mass (¢f. JEANS’

¢ Dynamical Theory of Gases,” 2nd edit., § 261, (512)). Hence for a composite gas we have

R R R R
poCo = S1 o+ i 3, - = %3@1 * p2> =

and consequently
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By the equation of continuity (12°08), the last equation is equivalent to

: LDT 51Dy _
(1214) TD: Dt~
or to
(12:15) DT =0 D(ps) =0.

Since we are neglecting diffusion, m, (or Aym,+Asm,) is invariable, and (12'15)
expresses the adiabatic law of expansion of a monatomic gas as a given element is
followed throughout its motion, viz.,

(12°16) Do = kpy™ T = ¥p,™.

Thus (12°12) may be regarded as giving the correction to this law owing to
diffusion, viscosity, and conduction. The left-hand side represents the net rate of
increase of energy of molecular agitation, being the increase corresponding to the
rising temperature after allowing for the change of heat energy produced by adiabatic
expansion or compression. The right-hand side indicates that this is due to the
following causes :—

(2) We are considering the fluid contained in a volume element which moves with
the mean motion of the fluid ; but in addition to this motion there is one of inter-
diffusion within the element, there being a stream of + (vu/s, ¥y, ¥%/;) molecules
per unit time per unit volume in opposite directions. The x-components of the

Du, Du,
Dt D¢

being present, since we are throughout concerned

¢ respectively,

effective forces on each of these molecules are X, —m, and X,;—m,

Du,
Dt
with the energy relative to the mean motion (u,, v, w,). The work done on the
fluid by these forces is expressed, in thermal units, by the first right-hand term of
(12°12).

(B) Owing to the motion of diffusion there will be an increase in the number of
molecules m, and an equal decrease in the number of molecules m,, at the rate of
ou'y o, ow,
<8x + —5; + 0z
motion is the same for molecules m, and m, so that this change affects only the
energy of mean motion, which is 4m,c,’ for a molecule m,, and $myc,” for a molecule
m,.  The increase of energy due to this cause 1s represented by the second right-hand
term of (12°12).

(y) The third term gives the heat generated by the viscous forces acting in the
gas, being, in fact, twice the “ dissipation function ” of the viscous motion.*

the second term depending on

> per unit time per unit volume. The mean.energy of peculiar

* Cf. LAuB, ‘ Hydrodynamics,” p. 518.
VOL. CCXVIL—A. 2 A
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164 DR. 8. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE

(8) The fourth term represents the increase of heat which ordinary physics regards
as due to conduction, together with a term due to diffusion which has not, so far
as I know, been hitherto recognised in either ordinary physics or the kinetic theory.
These two terms are discussed in detail in the next section of this chapter.

(c) Conduction of Heat and the Thermal Flux of Diyffusion.
If there is no mass motion the equation of energy takes the form

(12'17) poC ar_

1 2
"ot T

1 :
Zvguty (X Xz) j e (%pIUICIZ—I—%pQUsz),

and in the last term we will now substitute from (5°25), with the result

(12°18) pva%:f—=}2vOu (X,—X,)
9Z§Rf{ o€’ 2”'(1’1“ +re,)+ By o E(V”B'+V2'8_r)}

It is convenient to eliminate ¢, by means of (3°15), and on so doing (12°18)
becomes transformed into

(12.19) poC, aa’f tlTEVou,o(Xl—Xz)
Zr (no,+ra_,) ®
o mp| Frlon), g af
+2 [ v wot 5By 21 Z (1B, +0.8_,)

w‘c—ﬂ

é7 % 7 (o, + Vaohr)}] .

If we suppose that no diffusion is taking place, so that (v/,, v/, w/,) are all zero,
and compare (12°19) with FoURIER’S equation of conduction of heat in a gas at
rest, s.e., with

. oT 8< 8T>
12°2
(12:20) PG = 25\ %

we obtain the following equation for the coeflicient of thermal conduction & :—

(12°21) y = 35,21 { (B4 mB_,)— ozrr(m . ,)}.

From (12'19) we perceive also that the motion of inter-diffusion is accompanied
by a flow of heat, which is proportional to the velocity of diffusion, and also depends
on the temperature and the molecular densities, but is independent of the other
characteristics of the gas. We shall term this process the thermal flux of diffusion ;
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in the absence of thermal conduction and of external forces we shall have as the
equation of energy

. M _ <2 (my
(12-22) £C, i Eam (BY,),

where I is defined by the equation

(12-23) = RT i, Sr(na,+na_,),
J oy 1 )
and is termed the specific energy of diffusion.
We now proceed to consider in detail the various coeflicients of diffusion, conduction,

viscosity, and specific energy of diffusion for which we have obtained general formulee.

§ 13. Tae CorrFIiCIENT OF DIrFrFusioN D,
(o) The General Formula.

The general formula for the coefficient of diffusion D,, is obtainable in terms of the
molecular data by substitution in (10°05) of the value of o/, given by (5°35), thus

’
(1 3 .01 ) DIZ = %AORTAIAQ —%—ggy‘;&gﬂ% M

So far as §9 (b) A, had remained quite arbitrary, only the product of A, into the
coefficients o being definite. 'We there defined A, as having such a value as to make
& equal to unity. We now substitute that value (¢f. (9°022)), viz.,

‘ _ 27 (mu+ my)
( 13 02) A, = 27?\"1)\2V0m1m2K’12 (O)

in (18°01), with the result that

3 (my+m,) RT V' (8,,,%)
27ru0’m1m2K’12 (O) V (5mnamn)

(13°03) D,, =

where V' is the principal minor of V.

(b) The Case of Maxwellian Molecules.

In the case of Maxwellian molecules it is readily evident from (6°03) that all the
elements of the first row and column of V (4,,®,.,.), save the initial element a,, are
zero. Hence in this case V is equal to ay, V', t.e.,

(1304) V) 1

V (Smnamn) aOO ’
2 A2
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in view of the convention in §13 (@) as to the value of a, Hence, by (13'03), we

have

. 3 (m, +m2)RT
( 13 05) D, = 2avymm,K’,, (O)

as the exact value of D,, when the molecules are Maxwellian. The same result
follows readily also from (10°05), (6°08), and (6°04). It is the same, except as regards
the notation, as the formula deduced by MAXWELL in his second great memoir
on the dynamical theory of gases.*

(c) A First Approxzimation to the Coefficient of Diffusion.

Only in the case just considered does our general formula for D, reduce to a
simple finite form : usually we must, for practical purposes, be content to make
approximations to the exact result. As in §9, this may be effected by taking
successive finite convergents to our infinite determinants, which is equivalent to
neglecting all terms in the expansion of f (U, V, W) after the first one, two or more
at the beginning. Thus for a first approximation, taking only the central element of
V (8n@mn), 1t 18 clear that V'/V is equal to 1/a,, or unity simply (¢f. § 13a). Hence
we have

(13'06) D, = 3(ml+m2)RT

= 1 . .
7 Qmryymym, K, (0) (1st approximation),

a result which also follows from (10°05) and (9°038). This, it will be noticed, is the
same as (13°05), showing that what is in general only a first approximation to D,, is
in the case of Maxwellian molecules a strictly accurate result.

The formula (13°06) is not new ; it was first given by LANGEVIN,| and subsequently
by myself] independently. In all these cases, and also in MAXWELL'S investigation
the method used was an approximate one which involves the assumption that
the peculiar velocities of the molecules of the two constituent gases are distributed
about the separate mean velocities ¢;, ¢, according to MAXWELL'S law for the steady
state of a gas. The method of the present paper is based on an actual determination
of the law of distribution. The assumed law just mentioned, if expressed in the
manner adopted in § 8, would involve no a-coefficient beyond «, (neglecting squares
or higher powers of the velocity of diffusion ¢/;). This coincides with the true law
only in the case of Maxwellian molecules (§ 6), so that only in that case is (13°06)
exact : MAXWELL himself did not prove this rigorously, though he obtained the

* MAXWELL, ¢ Phil. Trans.,” vol. 157 (1866) ; or ‘ Scientific Papers,” ii., p. 27.

T LANGEVIN, ‘ Ann. de Chimie et de Physique’ (8), v., 245, 1905 : ¢f. also Exskog, ¢ Phys, Zeit.,” xii.
533, 1911.

{ ¢Phil. Trans.,” A, vol, 211, p. 499 (35), 1911,
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accurate expression. In the general case (18°06) is an approximation only, and the
method used by MAXWELL and the other writers just named does not afford a ready
means of estimating the error involved. The present investigation makes it clear
that in extreme cases this is far from small.

(d) A Second Approximation to the Coefficient of Diffusion.

Passing now to a second approximation, by means of (10°05) and (9°15) we obtain
the result ‘

1  3(m+m,)RT
]. — €y 2’ﬂ'V0m1m2K/12 (0)

(13°07) Dy, = (2nd approximation).
The correction to (13°06) consists of a factor (1—¢)~?, ¢ being given by (9°14) and
(9°09)~(9°13) ; since for Maxwellian molecules k, = 1, it follows from (9°14) that
¢ = 0 in their case. In order to estimate the importance of ¢, in other cases we must
consider some special typical molecular models, and determine the numerical values of
e for such gases. The most important models are those for which K';;(0), &, ete., are
given in § 9 (/).

In paragraph (g) of this section we shall consider in detail the range in the values
of ¢, calculated from these numbers, for various ratios of the molecular masses and

“diameters. Since ¢, only affords a second approximation to D,, however, and not the
exact value, it is convenient first of all to examine certain particular cases of our
formulze (¢f. §§7, 8) which throw some light on the accuracy of a second
approximation in general.

(¢) The Coefficient of Diffusion when m, : m, and oy/o; are Very Large.

In the special case when the mass and size of a molecule of the first kind are so
great, compared with that of a molecule of the second kind, that m./m, is negligible
(¢f. §7), we obtain from (10°05), (7°20) and (13°03) the result

SRT D, _ D, 3
2mvgm; K3 (0) D~ D 16w, (oy+0s)° (hrm)™’

(18708, 9) Dy, =

where D is a determinant (occupying only a quadrant of the infinite plane) whose
general element is given by (7'21), while D, is its principal minor. As usual, for
Maxwellian molecules D, = D. We proceed to make successive numerical approxi-
mations to Dy/D in the case of molecules of other types.

For molecules which are rigid elastic spheres we have seen (9'32) that

(18°10) k, = gi;i;’
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so that by (7°21) the general element of D is

(13°11) 8., = a,,iﬁ”—”)f—ﬂ- 7> 0, 8> 0.

(r+3). (s+3),

The following are the numerical values of the elements as far as the fourth row and
column, the exact values being given in the first expression, and the decimal values
to three significant figures in the second : —

1 1 3 .
1312) D=| 1 X ~L 31| 1000 0200 —0029 0010
(1812) 5 57 5.7.9
113 23 35 . .
o1 23 0200 0520 07131 —0°021
5 55 557 5579
1 23 433 1077 | . . .
-1 —0'020 07131 0353 0098
57 557 557.7 557.7.9
5 338 1077 326613 0010 —0'021 0098 0268
5.7.9 5.5.7.9 5.6.7.7.9 5.5.7.7.9.9

By neglecting the rows and columns of D after the first, second, third and fourth
respectively we obtain the following four successive approximations to Dy/D :—

TaBrLE 1.
Approximation. D. Dy/D.
Ist . . . o . .. 1-000 1-0000
833
13 13 )
ond . . . . . L. 35 = 0-480 12 = 1-0833
235
4608 5100
3rd . S5 95 49 = 0-150 608 = 1-1068
97
106168100 1185408%
4th . “poigr - = 0:035 1061681 = 1-1165

The successive approximations to D,/D evidently converge with some rapidity
to the value 1°12 or, more nearly, 1'13; the correction introduced by the second
approximation covers two-thirds of the error of the first.

It is of importance and interest to notice that in this case an exact solution is
obtainable by another method, less general than that of this memoir, but more
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effective in the particular case before us; this solution is due to LorENTZ, and may
be expressed in our notation by*

2

(131 = ' ’
( 3 3) 'Dlz 31/0’7"(0'14‘0'2)”(72'7"7”’2)ll2

This is identical with our own solution (18°09) if

g D, 32_ ..
(13°14) 5 =5 = 1'1817,f

and our approximations to D,fD show how this numerical value is approached by the
successive convergents to our infinite-determinantal solution.] Incidentally, we may
notice that (13:14) affords an expression for = of a kind which, so far as I am aware,
is quite new.

If the molecules are n™ power centres of force (cf.§9 (f)), our general formula
(18°09) becomes (when m,/m, is negligible)

' 3
(18°15) D, = %9 LA

BT, (o) () (e, (3 2

and the general term of the determinant D is given by

I‘(fr+s+3—-—2——>
n—1

(r+2), (2.7 (3--2)

(13°16) S, =8,

With this we may compare the exact formula obtained by JEANS (loc. cit.), using
the method of LorENTZ,
2 2 >
sT <2 +— 1

(18°17) D, = " .
AN (n) (hmlmzKlz)n_l (h”’mz)‘/’

* (f. LORENTZ, ¢ Archives Néerlandaises,” 10, p. 336, 1905 ; ¢ Theory of Electrons,’ p. 268. Also, for a
more general theory along the same lines, ¢f. JEANS’ ¢ Dynamical Theory of Gases’ (2nd ed.), §333 (654)
or § 450 (890).

PIDDUCK, ¢ Proc. Lond. Math. Soc.” (2), 15, p. 112, 1915, has also deduced LORENTZ’S result as a special
case of the general method of solution by integral equations.

t [I have now obtained a rigorous proof of this equation and of (13-18).—February 22 1917.)

i Of. the footnote to page 171. :


http://rsta.royalsocietypublishing.org/

p
A
L
—%
AL B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

170 DR. S. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE
These are equivalent, so that

19 Pegr(E)rl-)
(1318) =5 T(2+—5)T(3~—=

16 2 2 2 2 2 2
- 2 )2 (9“2 _)(1—-~2_ 2 1— 2
9 <1+n—1> n—1 (2 n—1> <1 n—1> F(n—l) P( ‘n—1>

16 2 2 2 2 1
—_— —_ 1-——)
9 <1+n—1>n—1<2 n—1 < n—1> i 2’

by a well-known formula in the theory of gamma functions.
of Maxwellian molecules), the last equation gives D,/D = 1, as it should do.

When n = 5 (the case
When

n = o, corresponding to the case of rigid elastic spheres, D,/D = 3—2, as before.
w

It is of interest to consider one or two intermediate values of n in order to see with
what rapidity our determinantal expression for D,/D converges to the value given
by (18°18); we shall not go beyond a third approximation.

The determinant D, as far as the third row and column, is as follows, where m

has been written in place of

1—m 1—m?
13'19) D = 1 B -
( ) 5 5.7
1—m 18—4m+m? 23 —27m+ 5m?—m?
5 5.5 5.5.7

_1—m® 23—27m+5m’—m?® 433—216m+70m*—8m*+m'

5.7

In the following table are given the first three approximations to D,/D for a few

5.5.7

5.5.7.7

typical values of n, together with the exact values caleculated from (18°18) :—

Tasre IL
D,/D.
n m. Approximations. _
Exact value.
1st. 2nd. 3rd.

5 1 1-000 1-000 1-000 1-000

9 3 1-000 1-023 1-027 1-031
13 % 1-000 1-039 1-048 1-056
17 + 1-000 1-049 1-060 1-072

o 0 1-000 1-083 1-107 1-132
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This table well illustrates the general remarks on the convergence* of our formulse
which were made in § 9 ().

(f) The Coefficient of Self-Diffusion of a Gas.

The next simplest case of a general character which we shall consider is that
in which the two sets of molecules are alike in mass and dynamical properties ;
a special case of this is that of a simple gas, the two sets of molecules being identical—
the corresponding coefficient of diffusion D,, will be written D,, and termed the
coefficient of self-diffusion. From (10°05), and (8'9), the latter equation being the
one appropriate to the case before us, we find that

. 3RT
(13-20) D, = — R OB A
where we may now omit the distinguishing suffixes 1, 2; V/; is the principal minor
of V,, whose general element is given by (8°10). We may note that the factor V' [V,
is independent of »; and », (§ 8). '

As far as the first two rows and columns, V, has the following form :—

(13-21) v, = 1 £ (k,—1)

3 (ky—1) oo (11 =10k, +7k,) + %k,

The first and second approximations to V/ [V, for a few typical molecular models
are given in the subjoined table: the model chosen is the n'
which is equivalent to a rigid elastic sphere when n = .

power centre of force,

TasrLe ITI.

' Maxwellian Rigid elastic
Vo/V. | gas, n =9 n = 17. spheres,
; n = B. n = oo,
\
| . —
1st approximation . . . 1-000 1:000 1:000 1:000
2nd approximation. . .| 1-000 1-004 1-008 200 = 1015

~

In calculating the approximations to V'V, for n = 9 and n = 17 we have adopted
the values 0°420 and 0°390 respectively for I, (n)/I, (n); it would be very troublesome

* [ Added Jume 2, 1916.—1It is interesting to notice that in all the cases in Table II. the error of the
third approximation to Do/D is equal (to the order of accuracy of one unit in the last figure given) to the
difference between the second and third approximations.

After each step in the approximation the ratio of successive increments seems to become progressively
larger, and from Table I. it would be difficult to judge whether Do/D converges to 1-12 or 1-13, if we did
not know the correct value to be 1-1317.] '

VOL. CCXVIIL.—A. 2 B


http://rsta.royalsocietypublishing.org/

VA\
N
. 0

/

e

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\

3

a

///

AL

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

172 DR. S. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE

to calculate the exact values of these functions, but fortunately the present calculation
does not require them to be known with any great accuracy. When n =5 we have
I, (5)/I,(5) = 0501, and when n = o the value is 0'333 (¢f. JEANS treatise, 2nd ed.,
§ 33), so that the assumed values when n =9 and n =7 cannot be materially
In error.

The value of V/)/V, is in all the cases considered (n =5 to n = o) very nearly
equal to unity, the correction introduced by a second approximation being so small
that further approximations are not likely to lead to any but a negligible increase in -
accuracy. Thus the exact value of V//V in the case of rigid elastic spherical
molecules, for instance, is not likely to differ from 1017 (slightly greater than 1°015)
by more than one part in a thousand.

The exact expression for Dy; corresponding to molecules of the type just mentioned
is consequently given by the following equation :—

. 3
13722 Dy = 1017 o
- (1322) n=10 7321/00‘2(2}&71"7%)/2
' 01520
1323 = 01520 _
(15:25) @) ()"
(1824) . = 12005,
. p

where in the last line we have made use of the formula for the coeflicient of viscosity
x for a simple gas, which has already been given by the author (‘ Phil. Trans.,” A,
vol. 216, § 11 (D), p. 337), viz.,

5 1
64 (271')1/’ vo? (hm)l/z'

(13-25) k= 1016

In my first paper on the kinetic theory (‘ Phil. Trans.,” A, vol. 211, p. 477, 1912)
- the formule (1322)-(13'25) were given as above except for the omission of the
factors 1°017 and 1°016 in the first and last, which resulted in 0°150 taking the place
of 0°1520 in (1323). ‘ '

The expression (1323) for D, agrees almost exactly also with a result obtained by
Propuck™® for the same quantity, by an entirely different method. Mr. Pippuck’s
work 1s based on HILeer1's transtormation of BorrzmaANN's integral equation for the
velocity-distribution function.i His formula for Dy, (loc. cit., p. 101, 41) is the same
as (13°23) except that the numerical constant, there given only to three places of
decimals, 1s 0°151.

* PippUCK, ¢ Proc. Lond. Math. Soc.,” (2), 15, p. 89, 1915.
T Hirsert, ¢ Math. Ann.,’ 72, p. 562, 1912 ; ‘BoL1ZMANN, ¢ Vorlesungen iiber Gastheorie,” 1.
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We may also compare (13'24) with the result obtained from the simple mean-free-
path theory (first introduced by Maxwert*) with JeaNs’ correctiont for the
persistence of velocities, viz. (in our notation)

(18°26) Dy =1347%,
P

This is therefore about 10 per cent. larger than the exact value (18°24).

(9) The Variation of D, with the Relative Concentration of the Component Gases.

In the course of the development of the kinetic theory perhaps no branch has been
the subject of more dispute than that dealing with diffusion. The point of greatest
difference was the effect on the rate of diffusion of the relative concentration of the
diffusing gases. MErYER'S elementary mean-free-path theory} led to a formula for
D,, according to which the coefficient of diffusion should vary with the proportions of
the mixture over the extreme range indicated by the equation

(1327) (Digdy=o _ 75

Thus, when the molecular masses are very unequal, the range in the value of D,
should be very great. No such large variation is found to exist, however, according
to the results of experiment.

MEeYER’s theory took no account of the tendency of a molecule to persist in motion
along its original direction after collision : as JraNs§ has shown in connection with
viscosity, however, ““ persistence of velocities ” is a very important fact, the neglect of
which leads to grave error in the mean-free-path theory. KurNEN]| has shown that
when taken account of in the theory of diffusion, it largely removes the discrepancy
between the small observed variations of D, and the variations theoretically
calculated by the method referred to.

An earlier modification of MEVER'S theory by GrossT may also be mentioned. This
predicts variations of amount similar to those observed, but generally of the wrong
sign ; its merits are not such as to demand more than this brief historical reference.

* MAXWELL, ‘Scientific Papers,” i, p. 377, or ‘Phil. Mag.,” 1860, January-July.

T JEANS ¢ Dynamical Theory of Gases,’ p. 273. The whole of the chapter on diffusion (ch. xii. in the
second edition) is of great interest, and a general reference may be made to it for comparison both of
theory and experiment with the results of this memoir.

1 MEYER, ¢ Kinetic Theory of Gases’ (English edition), p. 255.

§ JEANS’ ¢ Dynamical Theory of Gases,” pp. 276, 292.

| KuENEN, ¢ Supp. No. 8 to the Communications from the Leyden Physical Laboratory,” January, 1913.
Cf. also JEANS' treatise, ch. xiii. (2nd ed.), p. 328. v ,

9 Gross; < Wied. Ann., 40, p. 424, 1890; the disagreement of Gross’s theory with experiment has
been indicated by Loxius, ¢ Ann. d. Phys.,” 29, p. 664, 1909. :

2 B2
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174 DR. S. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE

[n sharp distinction from MrvrRr’s theory, STEFAN® and MAXWELLT put forward a
theory of diffusion which led to the result that D,, is entirely independent of the
ratio » v, the formula involving only the sum v+, or v, STEFAN'S theory was
based on the hypothesis of rigid elastic spherical molecules, and agrees with the
corresponding form of our first approximation to D, (18:06); the same result was
subsequently obtained by LaNcevIN] and the present author§ on the most general
molecular hypothesis, in the form (18°06). MaxwrLr’s first formula related to the
elastic sphere theory, and was greater than that of STEFAN by one-third, MAXWELL
being considerably in error: his second formula related to Maxwellian molecules, and
was identical with the exact formula for such molecules given in §13 (b). All these
results share the property that they are independent of », : v, and as the present theory
shows, all of them are in error in this respect, except MAXWELL'S second formula.
They require to be multiplied by the correcting factor V//V of (13°08) : this factor is
unity in the case of Maxwellian molecules, so that for a mixture of two sets of such
molecules Dy, is independent of their numerical proportions. This is one of the few
properties of a gas which depends in its very nature (i.e., not merely in absolute
magnitude) on a particular molecular model : another such property will.be noticed
in §14. The fact that the absence of variation is in disagreement with experimental
results confirms the conclusion drawn from other sources of evidence that Maxwellian
molecules are unsatisfactory representations of actual molecules.

The only other general case of independence of Dy, or v, :4 is that in which the
dynamical properties of the two sets of molecules are alike, as in the case of self-
diffusion (§ 13 (f)). Hence we may speak of the coefficient of self-diffusion of a gas
without specifying the ratio » :», in contemplation ; in general, on the contrary, D,,
is defined only when the value of v : v, 1s assigned.

In the case when my/m, is negligible (§ 18 (¢)) the mutual encounters of the light
molecules are neglected, with the result that in this case also D, depends only on v,
This, however, is perhaps hardly to be regarded as an additional exception to the
general rule.

The error in the formulse of StrraN and the other authors mentioned arose from
the neglect of the difference between the actual law of distribution of the peculiar
velocities of the molecules and the assumed Maxwellian law. This is taken account
of in the present paper, and leads to the correction factor V//V in (13:03); we will
now proceed to consider how this factor varies with the ratio v, :v, by studying the
variation of the second approximation to it, z.e., (1—¢)™*. From this we may readily

* STEFAN, < Wien. Sitzb.,’ 63 (2), p. 63, 1871 ; 65, p. 323, 1872

t MAXWELL, ¢ Scientific Papers,’ i., p. 392 ; ii,, p. 57 and p. 345. (f. also BorLTzMANN, ¢ Wien. Sitzb.,’
66 (2), p- 324, 1872; 78, p. 733, 1878; 86, p. 63, 1882; 88, p. 835, 1883. Also ‘ Vorlesungen iiber
Gastheorie,” 1., p. 96.

[ LANGEVIN, loc. cit. ante.

§ ¢ Phil. Trans.,” A, vol. 211, p. 449.
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infer the character of the variation of V'/V itself, in view of our knowledge of the
‘mode of convergence of the successive approximations as indicated in § 13 (e).

(h) The Variation of (1—e)™" with v v,

So far as regards our detailed discussion of e, we shall confine ourselves to the case
of rigid elastic spherical molecules; for Maxwellian molecules ¢, is identically zero,
while for n® power centres of force (5 < n < ®) ¢ is intermediate between 0 and the
value appropriate to rigid elastic spheres (¢f. Tables II., II1., § 13), the character of
its variations being similar in the two cases. k

From § 9 (¢) we have .

. by + 210wy + oy
(1328) e = (k,—1) divi‘*+2 div]lvi " 052:22,

and in the case of rigid elastic spherical molecules (¢f. § 9 (¢) and § 9 (f)) we may
write

(13:29) (b =1y e = S22,
12 §9QE) +78—248p
. _ 2_Zﬂ — :"‘-12 _ 2_2_)2 — M22

(18:30)  (h=1) d, 30—19%p—17u° (ki =1) dy  30—190p—17u,"’
where :
(13'31) J =y k= {i"lﬂ_}z

» — e - (01+o'2)2 ’
so that
(13:32) 0<p<t 0<k<1.

Since the suffix 1 refers to the heavier molecules, we have u, > u, and

. | by by
(13:33) . d1>d2.
The condition that %2- shall exceed % is readily proved to be
12 2

s = 4k+81p—180p*’

and it is found that, for the admissible values of p (z.e., 0 <p<<%), f(p) 1s positive
and steadily diminishes as p increases; its least value is consequently f(}), which is
equal to 13/(9+4k). Since £ never exceeds unity, f(p)> 1, and hence uy, < f(p), so
that

b,

1

N

|

n
uf o
(& .N

(13°35) >

S
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176 DR. S. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE

The sign of equality corresponds to the limiting case £ = 1, u; = p, €., to the case
of self-diffusion, in which instance, therefore, b,/d, = b,/d, = by,[d.,, € being indepen-
dent of v, : v, as we have already seen (§ 13 (f)).

We cannot unconditionally make the further statement that b,/d; > b,,/d,,, since
the necessary condition for this, viz., u,fu, > f(p), is not always fulfilled ; but it is
easy to prove that

-‘ by Dy
(19736) bl
if
3
(13‘37) - ]C; 7}? ( Jf“80/“2“"100/”‘1:“2)

M

When w, = u, = %, the last condition becomes k> 1, so that if £ = 1 we have, as
before, b,[d, = by,[d,y; if w = =% and k <1, then b,/d, < byfd,. The condition
(18°37) may be roughly expressed by saying that the more equal the molecular
masses, the more equal, also, must be the molecular radii in order that 0,/d, shall
exceed bp,/d,,; or, conversely, the more unequal the masses, the more unequal, also,
may be the radii, consistently with the truth of (13°37).

Clearly, if (13°37) is satisfied, and

1 12
P>

e, steadily increases as the proportion of the heavier gas varies from 0 to 1, and
consequently, also, Dy, steadily increases (¢f. (13°07)). If, however, (18'37) is not
satisfied, ¢, and Dy, will first increase to a maximum and then diminish slightly, as
the ratio », : v, Increases from 0 to 1.

As regards the actual value of ¢, the range (corresponding to all possible ratios of
molecular mass or radius) is from the minimum value of (k,—1)?¢[f, which is clearly
zero (when u, = 0 and », = 0, 7.e., when the heavier molecules are infinitesimal in
number and the lighter molecules are infinitesimal in mass) to the maximum value of
(k,—1)* bfe, which is 15 (when u, = 0 and v, # 0). The maximum value of (k,—1)*a/d
is %84, which lies between the above limits. The corresponding range of (1—e,))~", the
correction factor to the first approximation (13:06) to D,,, which is introduced on
making a second approximation, is consequently from 1 to 1°083. Hence, in con-
junction with § 13 (e), we may conclude that for rigid elastic spherical molecules the
total possible range in the complete correction factor V//V to the first approximation
to Dy (cf, (13°01)) is from 1 to 5?72, or 1132 (¢f. (13°14)).

It would not be difficult to construct a table showing the values of (1—¢)~* for
various typical pairs of gases, but owing to the fact that there are three variables
concerned (z.e., m,[my, oifoy, and »/v,) it would need to be somewhat complicated, and
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probably little more knowledge would be gained from it than may be deduced from
the above discussion and from Table IV. of § 18 (7).

(v) Variation of Dy, with v v,  Comparison with Experiment.

In view of the conflicting theories regarding the relation between D, and v /i,
several series of experiments to test the question were made at Halle during the years
1904-1909, under the direction of Prof. E. DorN.* The gases used were helium—
argon by Scmmipr and Lontus, oxygen-—hydrogen by DrurscE and JACKMANN,
carbon dioxide—hydrogen and oxygen—nitrogen by JACKMANN. In JACKMANN'S
summary of the experiments it is pointed out that the observed variations in D,
though far from negligible, are small compared with those predicted by MrvEr’s
theory, while Gross’s theory (¢f. § 13 (g)) is equally unsuccessful in that it predicts
variations of the right order but in the wrong direction.

JEANST compares these observations both with MErvER's theory and with the
corrected form of MEYER'S theory after allowing for the persistence of velocities
(¢f. §13 (g). The following table is taken from § 446 of his treatlse (2nd edition),
and relates to the pair of gases, helium—argon :—

TasLe IV.—Variation of D, for He-A.

Dy; (caleulated).
vifva D;; observed
. (Scmr and LONIUS). MEVER’S theor MEYER’s theory corrected
_ I (JEANS, KUENEN).
2-65 0-961 0-548 0-910
1-00 1-000 1-000 1-000
0-31 ' 1-036 1-526 ’ 1-110

In this table the values of D,, have been multiplied by a factor in order to make the
value corresponding to », = v, equal to unity, for convenience of comi)arison. JEANS
remarks, ¢ propos of the above table, that the observed variations of D,, are
insignificant compared with those predicted by MEYER'S theory, being small even
compared with those predicted by the corrected theory, and that MAXWELL'S simpler
formula (according to which D,, is independent of 1/y) is after all the most accurate
numerically. We shall see, however, that the present theory, with its correction
V'V to the usual first approximation (13°06) to Dy, gives results which are in much
closer accordance with the observed phenomena.

* Scumipt, ¢ Halle Dissertation’ (1904), and ¢ Ann. d. Phys.,” 14, p. 801, 1904; DeutscH, ¢ Halle,’
1907 ; JACKMANN, ‘Halle,” 1906 ; Lontus, ¢ Halle,” 1909, and ¢ Ann. d. Phys.,” 29, p. 664, 1909, where

the results of the whole series of experiments are summarised and discussed.
T JEANS’ ¢ Dynamical Theory of Gases’ (2nd ed.), § 446.
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178 DR. 8. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE

The following table contains the results of the HALLE experiments on D,,, as given

in JACKMANN'S summary. Additional columns give the values of (a) i—L, calculated
e

from (18°28) on the hypothesis that the molecules are rigid elastic spheres®: (b)
1

e
§138 (e): and (¢) of D, obtained by multiplying the values of V//V by such a factor
as to make the mean of the resulting values of D,, equal to the mean of the

V'[V—cf. (18°01)—estimated from the value of in accordance with §9 (a) and

corresponding set of observed values.

This 1s all that is here necessary, since we are

concerned now only with the variations of D,,, and not with its absolute values.

TarLe V.—Variation of D,, with v, : v,

I e S .
Dse.
(Gases. A = M 1 v .
_41. v1+ Vg. 1 -« ’ V,‘ -
Authority. Observed. Calculated.
" 0-273 1-035 1-050 0-244 0-248
Argon-helium. | 0-315 1-040 1-056 0-250 0-250
— 0-377t 1-044 1-063 0-250% 0-251
ScrMIpTT and LONIUS, 1 0-500% 1-050 1-073 0-254F 0-254
my/mg = 10. 0-677 1-058 1-087 0-256 0-257
0-763 1-062 1-094 0-263 0-259
0-25% _ . 0-276+ y
Oxygeniydrogen. 'f 0-95 _X} 1-035 1-050 0-276 } 0-276
Drvurscut and JACKMANN, 1 8? } 1-050 1073 gg?gT } 0282
mfm; = 16. L 075t 1-064 1097 0-289+ 0-289
Carbon dioxide-hydrogen. 0-95 1-029 1-040 0-914 0-912
o 05 1-059 1-089 0-218 0-222
Duvzson, 0°75 1070 1-108 0228 0-226
myfmg = 22.
Nitrogen-hydrogen.

— 0-235 1-030 1-042 0-268 0-263
JACKMANN, 05 1-050 1:073 0-266 0271
myfme = 14. |

Oxygen-nitrogen.

— 0-467 1-012 1-013 0-0733 0-0731
JACKMANN, 0-b 1-013 1-014 0-0730 00732
mymy = 8)7.

* The values of the molecular radii used in the calculation of ¢, were taken from the table on p. 476 of
my first paper (‘ Phil. Trans.,”” A, vol. 211, 1912) ; ¢f. the column there headed “elastic sphere theory.”



http://rsta.royalsocietypublishing.org/

a

J,

A
/—%
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
I~
b \

A

S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MONATOMIC GAS: DIFFUSION, VISCOSITY, AND THERMAL CONDUCTION. 179

We may conclude from the above table that the calculated values of D,, are in very
satisfactory agreement with the observed data, the differences between the two being
not greater than the experimental errors would render probable, if we may judge of
these errors from the internal accordance of the observed results. It should also be
remembered that the molecular model chosen for calculation is not the best
representation of an actual gas molecule, though it is sufficiently good for the
purpose, especially in view of its simplicity for numerical work.

(7) The Absolute Magnitude of Dys,.

We next consider the absolute magnitude of the coefficient of diffusion. A
comparison of a theoretical expression for D, with the corresponding observed value
involves not only the accuracy of the theory and experiment, but also the suitability
of the molecular model adopted as the basis of the theory. If we choose the rigid
~ elastic sphere as model (and for many purposes this very simple model is fairly
satisfactory) we may deduce from the observed value of D,, for a specified gas-
mixture the corresponding value of o+, (¢f. (18°01) and (9°81)). By doing this for
three pairs of gases A-B, B-C, C~A we can obviously determine from the resulting
values of o,+a, o,+0, o,+0, the individual molecular radii o,, o}, o.* By taking
different sets of pairs we may obtain more than one determination of each molecular
radius, and the mutual accordance of these affords some sort of check on the theory
—mainly, I think, relating to the suitability of the molecular model. But we cannot
in this way test whether the theoretical formula is in error by a factor which is
nearly or quite constant, since this would merely alter the deduced values of the radii
in a common ratio.

[ Revised June 2, 1916.—By another method, as follows, we can to some extent
check the absolute magnitude of the theoretical results. Having determined values
of & in the above manner, we can use o; (the radius for a particular gas) to calculate
D,, by the formula which expresses D, in the case of dissimilar molecules, putting
my, = my, o3 = o In this way, practically by interpolation, we obtain a virtually
experimental value of D;, (which cannot be measured directly). But the theoretical
expression for D, can also be written in the form D’} = k-:—)i, . and p; being

1
respectively the viscosity and density of the gas, while % is a numerical constant. If
the correct theoretical expression for x; is used here, the theoretical value of % should
agree with the experimentally measured value Dypifx;. The former depends, of
course, on the molecular hypothesis adopted, varying from 1°120 for rigid elastic
spheres to 1'504 for Maxwellian molecules. The following table gives several
experimental values of % (taken from JEANS treatisef), which all lie between the

* This method is due to Lord KELVIN, ¢ Baltimore Lectures,’ p. 295.

T Cf. JEANS’ ‘Dynamical Theory of Gases,” 2nd ed., §§ 447, 448. The value of & deduced from the
corrected MEYER’S theory is 134 as against the value & = 1-20 given by the present theory (13-24).
The formula for « there used is that given in my second memoir,

VOL. CCXVII —A. 2 ¢
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180 ‘ VDR. S. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE

values here theoretically deduced. The values of n, calculated from the variation of
viscosity with temperature, on the hypothesis that the molecules- are the n'* power
centres of force, are given alongside. The formula of interpolation used to obtain Dy,
from D,, is based on the theory of rigid elastic spherical molecules, and this, together
with the rather early date of the diffusion constants used (they were determined by
LoscaMIDT), may prevent us from expecting a very close agreement with theory. I
have not calculated the theoretical values of k& for values of n between 5 and o,
since they depend on certain integrals which must be evaluated by quadratures; but
it would be interesting to have these quantities determined. ]

n D11P1_
K1

Theory . o 1-200
Hydrogen . . 12 1-36
Carbon-monoxide . 9-3 1-34
Oxygen . . . 79 1-43
Carbon-dioxide 5-2 1-50
Theory . 5-0 1-504

Perhaps the most satisfactory comparison between theory and experiment is
provided by calculating o; both from the coefficient of diffusion, as above, and also
in some other way as, e.g., from the coefficient of viscosity «. Assuming that the
experimental data and the molecular representation underlying the theory are
satisfactory, the accordance of the two values of & affords a complete check on the
theory of Dy, and « jountly. Such a comparison was made in my first memoir (¢ Phil.
Trans.” A, vol. 211, p. 480), using the approximate formulse for D,, and « there
given ; the confirmation of the theory thus provided was perhaps as good as the
accuracy of the data might allow one to expect. The table in that paper requires
revision, because of the corrections to my original formulse which have been deduced
in the present and my second memoir. Until more modern and accurate data for
the coefficient of diffusion are available, however (and of such there is need), this
revision is hardly worth while in view of the smallness of the corrections mentioned.

In connection with this matter, finally, it may be pointed out that in tables giving
values of Dy, intended for accurate theoretical purposes it is necessary to specify the
ratio by volumes of the diffusing gases, since the theoretical expression for D,,, in
general, involves this ratio (s :»,). This practice has not usually been adopted
hitherto.

(k) The Variation of Dy, with Pressure and Temperature.
Since the theoretical expression for D,,, on whatever molecular hypothesis, contains

at least one quantity (molecular diameter or force constant) which is not directly
measurable, two or more values of D,,, corresponding to different temperatures or
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pressures, are necessary in order to obtain evidence from diffusion as to the best
molecular model. It is, therefore, of some importance to consider the variation of
D,, with pressure (or density) and temperature.

The first approximation to Dy, (18'06) varies as Tston+! in the case of molecules
which are n* power centres of force, the case n = o, T", corresponding to rigid
elastic spheres (¢f. ‘ Phil. Trans.,” A, vol. 211, p. 479). Tt may readily be seen that
the correction factor V//V in (13'01) is independent of & or T for these particular
molecular models (¢f. ‘ Phil. Trans.,” A, vol. 216, § 9 (B), p. 321).

Another molecular model, considered in my two previous memoirs, is the rigid
elastic sphere surrounded by a field of attractive force (the SUTHERLAND molecule).
The first approximation to Dy, in this varies as T"/(1+8'/T), where 8 is known.as
SUTHERLAND’S constant of diffusion.* It may be proved without difficulty, as in the
case of the coeflicient of viscosity for a simple gas (¢f. my second memoir, §§ 9-11) that
the correction V'/V is usually intermediate between unity and the value corresponding
to rigid elastic spheres without attraction. The correction factor in the case of
SUTHERLAND’S molecules also depends upon the temperature, but the variation is so
very slight as to be negligible.

As regards variation with density, the first approximation to D,, varies inversely
as the total density of the gas mixture, and is independent of the relative proportions
of the two gases. The correction factor V//V in (13'01) has been seen to vary with
the relative proportions (»/,), but if » : v, is fixed, the factor may readily be shown
not to vary with the total density v, +..

§ 14. Tee CoEFrFICIENT OF THERMAL DIFFUSION.
(a) The General Formula for Dy.
The coefficient of thermal diffusion Dy was defined in § 10 (@) by the equation

—1—@1‘-—;-1) dlog T
T ox T

(14°01) wy = —D

and was found to be given by (cf. (10°10), (5°36))

v/() (8mnbmn)

(14'02) Dy = —4B,8\T = BT VO.b)

In the case of Maxwellian molecules it was found that 8, vanishes (¢f. (6°05)), so
that for a gas composed of such molecules Dy is zero, and the phenomenon of thermal
diffusion is non-existent. This, together with the absence of variation of D,, with
n/v, (¢f. § 13 (g)), is one of the few properties of a gas which depends essentially on

* Cf. SUTHERLAND, ‘ Phil. Mag.’ (5), 38, p. 1, 1894, and my first memoir, p. 479.
2 ¢ 2
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182 DR. S. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE

the particular characteristics of the molecules. We shall see later that the
phenomenon is also differential, z.e., it occurs only when the masses or diameters of
the molecules are not the same for the two kinds. Thus when they are alike in mass
and dynamical properties £, (and consequently also Dy) is exactly zero (¢f. (8°18));
this is true whatever the nature of the molecules.

(b) The First Approxvmation to Dy.

The first approximation to Dy is obtained by substituting the value of £, given, to
this degree of accuracy, by (9°20), viz. (¢f. (9°17), (9°09)-(9°13)),

3 (m;+my) RT & (k,—1)

0 D. =
(14'08) T 2mymmaK 5 (0) A,

We shall not go beyond a first approximation in the general case, but (as in § 13 (e)
with regard to D,,) we shall briefly examine the order of magnitude of the corrections
introduced by further approximations, by a consideration of the special case when
myfm, and oo, are very small (§ 7).

(¢) The Value of Dy when m,[m, and /o, are very large.
In this instance the value of 8, is given by (7°22), and

NRT D)

14 = 2%y 1
( 4 04) DT ZWVomzKllz(O) D

When the molecules are rigid elastic spheres of radii o, o, this assumes the form

. N o 3, D,
(14 05) Dy = 16v, (a’l +0'2)” (hw’mz)l/’ D’
or (¢f. (7'26)) the same expression except that D,/D replaces D/,/I)'. In each case the
suffix 1 to D or D’ denotes the second minor of the corresponding determinant.

We have already given the value of D as far as the fourth row and column (§ 13 (¢)).
From this we find that the first three approximations to D,/D are, with their
successive differences equal to

5

i§=°4”
77
2280 .
1665"0494
30
556416 )
1061681 07524,
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These indicate the magnitude of D,/D sufficiently for our purpose, though for an
accuracy of (say) 1 per cent. it might perhaps be necessary to carry the calculation
two or three steps further. If we take the limit of these approximations as 0°58,
we have (cf. (18'13)) '

3N,y
16y, (c‘l + 0'2)2 (h?r"ﬂ’bg)l/2

(14-06) Dy = 058 = 0'51x; Dy,

In this case, therefore, Dy, is comparable with Dy, though it may be remarked that
if 2, is too nearly equal to unity, our assumption (§7) that the effect of collisions
among the lighter molecules is negligible may require revision. It may, indeed,
be readily seen from the general expression for Dy that this always vanishes if either
A; Or A\, becomes zero. '

- We may briefly examine the case also of n' power centres of force by means .
of (13'19). Considering only a first approximation, the following results are obtained
for various values of n :— '

First Approximations to D' D'

n= 5 (m=1) D’/D’ = 0, exactly.

n= 7 (m=3%) 0156, approximately.
n= 9 (m=3) 0227 y
n=18 (m =1%) 0°294 »
n=17 (m=1%) 0°326 »
n=233 (m=1%) 0372 )

n= o (m=0) 0°417 ”

The general formula, for the first approximation to I,/ is readily seen to be

= N

The last table shows that a very slight excess of n over its value for Maxwellian
~ molecules (n = 5) suffices to raise Dy, to a considerable proportion of its magnitude
corresponding to n = oo (rigid elastic spheres). The phenomenon of thermal diffusion
clearly disappears only under conditions which must be fulfilled with great nicety.

As an instance of the correction introduced by a second approximation in the case
of a finite value of 7, it may be noticed that the result of a second approximation
for n = 9 is 0°246.
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(d) The Approximate Value of Dy when o = o, and m,[m, is very large.

The case considered in the last sub-section is realised physically in a metal or gas,
among the molecules of which are found free electrons. Another case of physical
importance is that in which the molecules are similar except in mass, m,/m, being
large ; the diameters of ordinary molecules do not differ greatly, while their masses
may be widely different. Thus the diameters of the oxygen and hydrogen molecules
are approximately 178.107°% and 1°83.10* respectively, the ratio of their masses
being 16. If in our first approximation to Dy given by (14'08) we insert the values
of K'\;(0), k,, &ec., appropriate to rigid elastic spherical molecules, and write o = o,
w1 = 1, uy = 0, the result is

1HA N, 3 <mI +m,

\a
B imately.
4 (9+>\2) 16, (0'1—5—0'2)2 kmlmz) » approximately

T

The corresponding value of ¢, (9°15) is 8X,/(89+1,), so that

89+ 3 my +m,\" :
D = 2 < . g> t 1 |
B 4 (9 + 7\2) 16y, (0'1 +a-2)2 hmlm2 , approximately
and
(14.07) DT . 15>\lx2

= S9in, D,,, approximately.

Thus when ), =2, =%, Dy/D;, becomes 0095, which is nearly equal to the
maximum value for this particular gas. When A, or \, vanishes, so also does Dy,
another instance of the general theorem on which remark has already been made.

(e) General Remarks and Numerical Values.

It is now evident, from the spécial cases treated in the preceding sub-sections, that
the importance of the phenomenon of thermal diffusion, as compared with ordinary
diffusion, is greater or less according as the difference between the molecular masses
and diameters is large or small. Tf the mass and diameter of the one set of molecules
are very large compared with those for the other set, Dy rises to about $D,,; if there
is a large inequality in mass, but no difference in size, Dy is about 1% D), at most™ ;
if mass and diameter are both the same for the different molecules, Dy = 0, which
is also its limiting value when X\, or X, tends to zero, and its invariable valus when
the molecules are Maxwellian.

The following are a few values of Dy/D,, corresponding to typical pairs of actual

* See Note I (p. 197) for the case of nearly equal masses and very unequal sizes.
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gases, and are obtained by comparing the approximations to Dy and D,, contained
in (13°07) and (14°08); calling their ratio £y, we have

1—¢,)
b = & ( 0
' YA
— 2 <k1 —1 ) [1 5 »(>\1H2 + >\21‘1) (,U-] —‘/’«2) —_ 4!’-1;“-2k120 (7\1 '—Az) + (>\1I‘-12k110 — >\2,U~21]5220):|
d+e +f 2
Vo 121

— %’Mlﬂvz (A] '—Az) +6 (A2M12_>\1M22) + (7\2,“-1A1 _ >\1112A2)
AA+ (6 "‘”230‘//-1#2) (A-l + Az) =42 (M12A1 + ,U-22A2) + I =0

b

where
e v | 20 V e v | 205 \
A =420 (200 Az_.g___(_ .

b
Vaphy \O1 + Ty v \oy 0y

The values of o used in calculating the results in the following table are taken from
the table on p. 476 of my first memoir.

TasrLe VI.—Comparison of Dy, D,, Dj,.

PHILOSOPHICAL
TRANSACTIONS

\

a
a ¥
[ b

A
S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Argon-helium. Oxygen-hydrogen. Oxygen-nitrogen.
. m
%=9'8, %‘;:16, =1
91 _ . 91 1-34 91— 0-97
Ratio of the oo 1-69, oy ’ Ty ’
two gaseous com-
%onents. kl - 20'4)\1—{-4'8)\2 . k-_u _ 28'0)\1-{-5'2)\1 ! ZCT - 0'33)\.14"041)&2 )
32:6+4+5862 44-422 45°5+178-3% +5-82 22-2+9°343 48-722
Vo Vi ve Vi vy vy
D D, | D D D,| D D D, | D,
fo =22l Vo | Dpop Y p _Yp | P (o= 2 |k = 2P| P,
" Dp|? Dy Dy T D’ D Do * Dy Dig Dy

M=1, =1 0133 | 0513 | 3-9 | 0122 | 0592 | 48 | 0°008 | 0-026 | 32

Vo

8!

vy

=
Il

i
I

I

0-132 0-408 3-1 0-128 0-441 34 0-010 0-033 3-3

M=% “=3| 0079 | 0166 | 21 | 0-079 | 0°230 | 29 | 0-007 | 0:024 | 3-4

vy

We may remark, finally, on the direction of thermal diffusion : since Dy has been

found to be a positive quantity (14°01) shows that the heavier gas tends to diffuse

_ towards regions of lower temperature, while the lighter gas tends to diffuse towards
those of higher temperature.®

* (F., however, Note E, p. 197.
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§15. TaE COEFFICIENT OF PRESSURE DIFFUSION.

In §10 we saw that, among other causes, a pressure gradient is an agent in
producing diffusion, according to the law (¢f. (10°08)),

. 1 LOpy _ d log p,
(15°01) wy=D, B =D oD,

where (¢f. (10°09) ),

! g (my, —my)
1502 D, ="p, =220y kD,
( ) 2 m, 12 >\1m1+>\2m2 12 12
if |

. — Ay (ml_mz)
(15°03) k, = o

The phenomenon depends essentially on the difference of mass of the molecules, and
we may note also that, like thermal diffusion, it tends to zero with A, or N,.  If my/ms
is very large, k, clearly has the value \,, except when X, is very nearly equal to 1.

It is interesting to compare the degree of diffusion produced by equal gradients of
log p, and log T. This is equivalent to comparing &, and k. When m,fm, is very
large, k,/ky = 1/0°51 or approximately- 2, if oo, is also large (¢f. (14°06)), or
(89 +A;)[15, if oy = o, (¢f. (14°07)), save when A, is small. The factor £, unlike ks,
is not dependent on the relative size of the molecules. '

In Table VL. are given the values of %, corresponding to the three typical pairs
of gases considered in §14 (¢). It appears that D, is of thrice or four times the
magnitude of D, for such gases.

§16. Tae SteapY STATE WirHOUT DIrrusion.

We will now briefly consider the steady state, without diffusion, of a gas subject
to the influence of (@) external forces or (b) boundary conditions which maintain a
constant non-uniform distribution of temperature. If we write zero in place of %/, in
(10°11), and divide by D,,, we have *

BA’ 1 823 \ 0 10 T
16°01) —20 ! + 0 g —

as the equation of state. It is more convenient to express the middle term as in the

following equations (substituting for 1 %%’ from 2°04— %—@;0 being zero, since the state
Vo (
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of the gas is steady—and expressing the result in terms of X, and X, instead of X,
and X';) :— ‘
dlog T

o
(16°02) 5;‘ = 2MAA, (X —X) — kg P
A dlog T
(16°03) = 2hAs (Xo—X,) + kg gi .
Since :
- ia>.__8,<h>*1_%“&‘@52_5&@&_1_%
(16°04) 8w<v2 T ox\A/ T a0 AFox A dx AF ox’

we may re-write (16°02) or (16°03) in the form

. 9 h> _optifx vy 14 0logT
(16 05) ax<V2, - 2h Vg(XI' Xz) 7\22 kT aw ’
or

. 0 109;(1/1/1/2) - _ _ ﬁT_ 0 logT
(16°06) | v = 2k (X,—=X,) S

If the temperature and external forces are- uniform, from (16'06) and the two
similar y and 2z equations we may deduce the integral

(16'07) l-}—l- = <lﬂ> 62" {(XI—X2)2+ (Yi—Yay+ (Z["‘Zz)z}’
0

Vo Vg,

which is a well-known result~ directly deducible from the statistical theory of
distribution of density in a gas.* If the external forces are gravitational, the z axis
being vertically upwards,

XZY:O: le—mlg’- Z2=_m2g!

and, if g be regarded as constant, we have

n — <_”_1> 6-—2}zgz(m;~—mq)
vy vy/0

The heavier gas, naturally, is relatively denser in the lower strata, the amount of the
effect being greater the greater the inequality of mass and the smaller the temperature.
In the case of the atmosphere, since the molecular masses of oxygen and nitrogen are
nearly equal, the magnitude of this imperfection of diffusion i but small. It is found
that the change in the value of /v, would amount only to about 4 per cent. per
kilometre.

* Of. JEaNs’ ‘ Dynamical Theory of Gases’ (2nd. ed.), p. 91 (234, 235).
t Cf. JEANS treatise, § 369.
VOL. COXVII—A. 2D
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188 DR. 8. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE

The variation of relative density in the atmosphere due to the temperature
gradient (which is about 7° C. per kilometre) is still smaller, and in the opposite
direction. Thus, taking v, :v, for oxygen and nitrogen as 1:3 roughly, and T as
280° C. approximately, the equation giving the variation of v :v, near the earth’s
surface (independently of the effect of the difference in mass) is

zwl)w 1, 10T

d\wy) TN T

By Table VI., ky = 0'008, A, = %, while if we adopt one kilometre as the unit of

length, writing T = 280 and gf as —7, the change in ¥ per unit length is found
4 Vy
to be
16 . 1 e
5 0008 '280.7 = 0°00035,

or 4y per cent. per kilometre. This variation is of one-sixth the magnitude of the
gravity variation, which it tends to neutralise, since the heavier gas tends to rise
owing to the temperature gradient. These changes are masked, however, by the
effects of convection currents ; it has been found that the proportions of nitrogen and
oxygen in our atmosphere are the same for all altitudes up to 10 kilometres,
and, indeed, above this height, right into the isothetmal layer or stratosphere.

As another instance of the phenomenon of a concentration gradient due "to
temperature, we may consider the case of a mixtune of equal parts (by volume) of
oxygen and hydrogen, or argon and helium, placed between two plates which are
maintained at freezing and boiling points respectively. Neglecting the small
variation in »fw, as far as the integration with respect to x is concerned, in the
equation

8<ﬂ\)_ 1 dlog T

< =k C
0x \vy/ Ay ox

we may conclude that, independently of the distance between the plates,* the change
in the value of v/fy, is

—4.0°130 . log, $3% = 0°161,

where we have taken k; = 0130 (¢f. Table VL), which is approximately the case
either for Ar-He or O-H. Thus near the hot plate there will be approximately
48 per cent. of the heavier gas to 52 per cent. of the lighter, and wvice versd near
the cool plate. This remarkable result is independent of the pressure of the gas,
assuming this to be uniform between the two plates, as will be the case in the

* To the order of accuracy according to which &y may be regarded as constant.
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absence of external forces; the density, on the other hand, will vary inversely as the
temperature.

These numbers are based on the hypothesis that the molecules are rigid elastie
spheres ; for n™ power centres of force the effect would be somewhat less, vanishing
altogether if n = 5. It seems very desirable that the theory should be experimen-
tally tested ; the effect predicted is of easily measurable amount, and could be further
magnified by taking a greater temperature range. The magnitude of the concen-
tration gradient is so large as to seem improbable, and it is possible that some
circumstance has been overlooked which would modify the theory, but I have been
unable to detect any such flaw. It is difficult to say how long a time 1t would take
to reach the steady state, or what influence the constant flow of heat through the
gas, from the hot plate to the cold, would have upon the phenomenon. (See Note D,
p. 196.)

§ 17. TaE COEFFICIENT OF VISCOSITY.

The general expression for the coefficient of viscosity is (¢f. (11°06))

(17'01) K1y = 5h% gﬂ z (Vl')’r+”27—r)'
2h o
We shall not trouble here to go beyond a first approximation to this expression,
even this being somewhat complicated. Referring to (9°27), we obtain the following
result as our first approximation :—

5RT e’ + 2,y + Copy?

17°02 = .
(17°02) 2 = TR 19 (0) Boeam® + 28156 1wy + B ggeams’

The values of ¢, ¢, ¢, €1y are defined by (928)—(9°30). The equation (17°02) is
identical, except as regards notation, with that given in my first memoir on the
kinetic theory (loc. cit., p. 451). When v, = 0, the formula reduces to

5RT 5RT

1 _
7K' (0) B,° — wK. 2 (0)’

(17°08)

which is the first approximation to the coeflicient of viscosity of a simple gas
composed entirely of molecules of the first kind. Some idea of the accuracy of
(17°02) as a first approximation may be gained from the fact that for a simple gas
the error (i.e., of (17°08)) amounts to only 1'6 per cent. for rigid elastic spherical
molecules, and less for n'* power centres of force (¢f. my second memoir, loc. cit., § 11),
the first approximation being too small. How the error varies with », : v, cannot be
stated without carrying the calculation further, but it is probable that it is always
of the same order of magnitude, 1 or 2 per cent. A second approximation to «,
would replace the last factor of (17°02) by the quotient of one homogeneous quartic
2D 2
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190 DR. S. CHAPMAN ON THE KINETIC THEORY OF A COMPOSITE

polynomial in v, », by another, reducing, when », = 0, to the second approximation to
r;, the coeflicient of viscosity of a simple gas. The present importance of such a
second approximation to x;, does not seem to render the complicated calculation worth
while. In my first memoir (loc. cit., pp. 469-472) a comparison of (17°02) with
experimental data is given, which suggests that the formula satisfactorily represents
the behaviour of actual gases in respect of the variation of «,, with /v, *

When the molecules are rigid elastic spheres, (17°02) has the special form

3 ol+ta)]
: 1+% : %{1 TP } (1432
Kig = _3 {RF p—— }/2 ( . 5'u12) ! ' 0 " 2,0-1/‘2 <O'1+0'2)2 V1V2+( * 5}‘21) &
2_2 ’
s (1 Ba) o+ {% (o4 02)"+ '5‘):%; Gﬁf;f)“} ve+ (14 B ) o2vs?
12 \ 011 0

where we have quoted from § 9 (). The special forms appropriate to molecules of
other particular types may likewise easily be written down.

§18. Tar CorrricreNnt oF THERMAL CONDUCTION,

In §12 the following expression for the coefficient of thermal conduction ¥ was
found (¢f. (12°21) ) :—
(1801 ¥ =3B, 3008, 408.) -

/ ®©

/r'(vjoc “+ voor _ r)}
0 1

Owing to the complexity of even a first approximation, we shall not go further
than this in the present paper; in making the approximation, we use the results
of § 9, which lead to the equation

25 (\ym, +Am,) (m, +m,) C,RT
27rm1m2K’12 (O) (a1V12 + 20(/]21/11/2 + a2V22)

\
Mg ’ M1 2 2 (k '_1) V1Vz€1 ]
L2 g+ 20 v+ a.u)——7
l<k1] o e kzzo : e dl"l "“Zdlz‘ﬁ”z“*“dz"z

(18702) 9=

If we put », = 0 in this expression it becomes

: _ 25RTC, _ 5
(18 03) = 27"]‘3110K/12 (O) = ZKI(Ju;

by (17°08) ; this agrees with the first approximation to ¥ for a simple gas which was
given In my two previous memoirs (loc. cit., p. 462, p. 387, respectively). The

* In particular, the theory there given indicates that the viscosity of a gas mixture may rise to a
maximum (for a certain value of »/vq) which exceeds the viscosity of either component separately. This
had already been proved by MaxwerLL for the particular type of gas dealt with in his second paper.
KuENEN has recently shown that the ordinary elastic-sphere theory leads to a similar result, when
allowance is made for the persistence of velocities after collision (‘ Amsterdam Acad. Proc.,” 16, p. 1162,
1914).
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expression in (18'02) for a composite gas does not, however, agree with the corre-
sponding first approximation in my original memoir (‘ Phil. Trans.,” A, vol. 211, p. 452,
¢f. 40 and 41). This is because it was there assumed (§2) that thermal conduction
was independent of diffusion, whereas we have seen that a temperature gradient
is inseparable from either diffusion or a concentration gradient; this invalidates the
equations (24) of that paper. The second term within the square bracket of (18°02)
especially arises from the terms in the velocity-distribution function which represent
the diffusion effect, although the first term is also affected. Evidently even the first
approximation to & involves the quotient of a homogeneous quartic in », », by the
product of two homogeneous quadratics, a complexity which makes it hardly worth
while to compare the result with the scanty experimental data at present available.
A brief discussion of my earlier formula, which may be expected to differ only slightly
from (18°02) in numerical magnitude, is given in § 18 of my first memoir.

§19. Tur Specrric ENErRcY oF DIFFUSION.

In §12 (¢) we saw that in a gas which is at rest and at a uniform temperature,
so that no conduction of heat is taking place, there may yet be a continual rise in
temperature if diffusion is going on. The gas being at rest as a whole, no gain
of thermal energy accrues through the medium of internal friction, and the thermal
flux of diffusion may proceed also in the absence of external forces, te., solely as
a result of variations of concentration. However the diffusion is produced, in the
latter or any of the other ways described in § 10, the equation of energy will contain
a term equivalent to that on the right of the following equation :—

(19°01) :  pCy %TZ = 2% (Bu,).

This is identical with (12°22), and assumes that only the thermal flux of diffusion
is operating to increase the heat energy of the gas.

By (1223) we have the following expression for IB, which we have termed the
specific energy of diffusion :—

(19°02) p=2L LS Getna,)
J oy
— EE B018/0 RO
J ARy A,
v, RT Dy

e J Dy,

o

by (9°20) and (10°05), (10°10). Since C,, the specific heat at constant volume for the
composite gas, is given by .

(19°03) | Q=3

3 v
2 Jm,
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we have, writing &y for Dy/D,,, as in § 14,

(19°04) B = AT

i

|
o

|2
>
&
=

Thus we may write (19°01) in the form

or 2@{2 ey
AN

(19°05) nC poo,,Tuq,}.

o T om
We may notice that there is an interesting analogy between this equation and the

ordinary equation of continuity

opy __ 0

-2 (Poufo)’

(19°06) T

which refers the rate of concentration of matter in a volume element to the differential
rate of transfer of matter across its extent. In the case of diffusion, the opposing
inter-diffusing streams carry equal numbers of molecules in opposite directions, but
while the energy of molecular agitation is the same for either group of molecules, the
kinetic energy of diffusion is different, owing to the different masses with the same
velocity of diffusion =+ (v, v/, w/,). It is, I imagine, to this cause that the thermal
flux of diffusion is due, though the suggestion is only tentative and does not affect
the accuracy of (19°05) one way or the other. It is clear, however, that if the
velocity of diffusion is such as to cause a concentration of the more massive molecules
in any region, at the expense of the lighter molecules (since the total number v, is not
affected by diffusion), the temperature of the region will rise, £, being positive (§ 14);
this readily follows from a comparison of (19°05) and (19°06). From our discussion
of the magnitude of %, in §14, it appears that the specific energy of diffusion is
greater the greater the difference in mass and size between the molecules, as we
should expect.

§20. AppENDIX ON THE INEQUALITY OF TEMPERATURE BETWEEN THE COMPONENT
(G ASES.

[Added June 2, 1916.]

Up to the end of § 3 the equations of this paper take account of the possibility of
a difference of temperature (as defined in § 1 (c)) between the component gases.
After that point it is virtually assumed that T', is8 zero. We will now briefly
consider what modification must be made in order to cover the general case.

It 1s clear from (3°151) that the component gases have different temperatures only
when the ratio of the two gases, by volume, is changing with time. Consequently in
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all steady states the temperatures are the same, although the gas may be non-uniform
in temperature, velocity, or composition ; in this case §§ 4-19 give a complete account
of the first-order phenomena of the gas.

When the relative proportions of the component gas are varying, so that the
temperatures are unequal, the determination of the coefficients a, 8, y in §§ 4-9 is
unaffected, but we must examine how far the physical equations of the succeeding
sections remain valid. It is immediately evident that all the phenomena grouped
under the general term “diffusion” (¢f. § 10 and §§ 18-16) are uninfluenced by the
presence or absence of the temperature difference, because the former depend solely
on the terms in f/(f), which are of odd degree in U, V, W (¢f. § 3 (a)), while the
terms relating to T, or %&:Q are of even degree.

Further, it is readily manifest that the equations of viscosity are likewise unmodified.
The mean hydrostatic pressures of the component gases p,, p, are indeed altered, but
their sum p, remains constant with the value defined in terms of », and T, by (1°18).
Since the series J (C?) of § 3 (a) is symmetrical in U, V, W, the partial pressures
(P22)> (Pyphis (P2:) are all affected equally with p,, and similarly for the corresponding
pressures for thd second component gas. The differences p,,—p,, p,,—Po, P..—P, are
therefore independent of T’;, and it is clear from (3°08), (83'04) that this is true also
of D,.y Pows Po,- Hence the equations of viscous stress given in § 11 are applicable
both to steady and unsteady states of the gas.

Finally, it may be seen on inspection that the equation of energy, deduced in § 12,
is true independently of the existence of a temperature difference between the
component gases. The equations (12°06), (12°07), on which the equation of energy is
based, remain true in all cases, if T is taken to be T,. Also the presence of the even
power series J (C?) in the expression for f(U, V, W) does not affect the value of UC?,
so that the expressions of § 12 (¢) for the coefficient of thermal conduction and the
-specific energy of diffusion are universally true.

It remains only to form an estimate of the magnitude of T’; by determining
approximately the coefficients 4§, in J (C?). For this purpose it is simplest to make
use of equation (228), viz.,

Ny _ (2hom2)s ' Q.2

<2h0m,)‘ 2 __
ac B 1.3.5...(23+1)A2'

(20°01) 1.8.5...2s+1)* ~ "%

Then it may readily be proved, after the manner of §§ 6, 7 of my second paper (loc.
“cit.), and as a consequence of the expressions (3°03), (3°04) for f(U, V, W), that

(QhOmI)‘

(2002) T e )

4 @
Acfs = 321)08&150 ?OE{dnn (”', 3) +d1212(""a 3)} 8r+d2112(7‘, 3) 8-—9‘])

'] . ! >
(20'03) 13 (gho’m(%s-l_ 1) AC» = 32D, §‘>§t—0r§0 [dmm(”', 3) S+ {d2222(”': 3) +d2121(7" 3)} é“r]’
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where

(20'04) i (7": 3) =N, o “V ey xy’ /:éo Pu” (?/) B ("'» 3) dz dy,
(20'05) 11o ("": S) =N, ;v ’” Ik wz?f k%o ¢15" (y) B a0 (7', 3) dx dy,

(2006)  dyp(r, 8) = N, ;v Ue()wy 3 (=1 pust (3) Blass (, ) dex dy.

There are similar equations in which the suffixes 1, 2 are interchanged, which need
not be written down.

From a comparison of (20°01) with (20°02), (20°03) we obtain the following
equations for d,, d_, :—

(20°07) 32D0%‘ 2;* [b{dun (7, 8)+ oz (7, 8)} Sty (7, 8) 8] =1,
0
(20'08) 32D0Vl 20: [d1221 (”', 3) 8r+{d2222 (”'a 3)+d2121 (""a 3)} 6-1-] = —1.

In these equations s ranges from 1 to o (that the zero value is excluded may be
readily seen from § 2 (¢), (¢)). Similarly r effectively ranges over the same values,
since it is clear from (20°04)—(20°06) that d (0, s) = 0 in all cases.* Hence the
equations (20°07), (20°08) do not enable us to determine §, and §_,, which are given
by (3°101), (8'102) in terms of the remaining &'s. Indeed, to obtain T’, in terms of
N,
at
Symmetrical determinantal expressions for these can be deduced as in § 5, if desired,
but we shall be content here to determine &', to a first approximation only.

The two central terms of the two central equations of type (20°07), (20°08) are

, by means of (3'151), we need only to calculate %7'8, or Elfm?_, (ef: (8122)).
1 1

(20°09) 32D0i}[{dml(1, D+ dps (1, D& +da, (1, 1)8.,] =1,

(20'10) 32I)0 ;]:dIZgl(l) 1)81_{— <{82222(1) 1)+d2121(1) 1)}3—-1] = '__1)
0

and 1t may readily be seen that

(20'11> i (17 1) = %& K’y <0)’
(20°12) s (1, 1) = == 1K' (0),

(20'13) d1212(]" 1) = ”‘d1221 (]-, 1) = d2121(15 1) = "'d2112(1; 1) = 316 M1M2V1V2K/12 (0)

* When 7 or s is zero, k = 0, and ¢#(y) = 0. Cf. (4-17).
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Hence, if we assign to D, (which has so far been arbitrary) the value given by

Yy,
20'14) - D, = 0 ’
( ) 0 87y par v K1 (O)

we may write the equations (20°09), (20°10) as follows :—

0
(20°15) ~ <1+ SEA N
4y pug/
. 0
(20716) —&+ <1 4+ Ruks B 3, =-1
- fhy Mo/

We have here introduced the notation

. o — K (0) o — K5 (0)
(20.17) k, =% (0)’ k, =R (0)

From (3'122) we deduce the following equation for &, :—
(20'18) ¥y = 2N Sr(8—5_,).
1

The first approximation to this is found, from (20°15), (20°16), to be given by

0 0
(20'19) fom g, R I
Mgk’ Ak’ + =2
dpypy
Hence, by (8°151) and (20°14) we have
. ’ v aA/o
(20°20) T, = §D;T.d, .
SN N PPN .S
- 47"”0:"-1/’-2K,12 (0) 4#1#2 (7\127‘710 +7\21k20) ot
=—-1D oml’*‘mz{l k ks’ }_1%
s 2R * 4y g (7\127‘310'1'7\21]‘520) ot
— o\
= IA _ai—o, :

where D,,’ is the first approximation to the coefficient of diffusion (¢f. (18°08)), while
I, is a new quantity, defined by the last equation, which we may term the
_anisothermal diffusion constant.
We may easily gain some idea of the order of magnitude of I, if we consider two
gases of similar dynamical properties, i.e., such that m, = m,, and £° = k> = 1. The
VOL, COXVIL—A., | 2 B
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last factor in I, is nearly equal to unity, so that we shall neglect it in our approximate
calculations. In this case, therefore,

¢ Dy’
I)\ = 7% R/m.

For oxygen the value of D, is approximately 0°19 (¢f. JEANS' treatise, p. 335),
while R/m = 260.10* (loc. cit., p. 181). Hence I, = 0'24.107" approximately.
Thus if the density-ratio of the two gases is changing by 1 per cent. per second, the
difference of temperature, if they are equally mixed (i.e., \; = A, = %), is approxi-
mately one thousand-millionth of a degree centigrade.®* The hotter gas is the
one which is diminishing in relative concentration. In fact, we may perhaps regard
the slightly excess speed of the molecules of this gas as the cause of its relative
expansion and consequent rarefaction. It is clear from these figures, however, that
the phenomenon is likely to be of very minute dimensions in ordinary cases.

* Thus T,() = Al)\g(Tl—Tg) = i(T]-Tg) = -0°:24.1077 %() = —'0'24.10—9, so that Tl—T2 = —107°

approximately.

Note A. (To p. 118, line 3.)

[Since this paper was communicated to the Royal Society, this part of the theory has been
experimentally tested and confirmed, at least qualitatively. An account of the preliminary qualitative
experiments, made by Dr. F. W. DoorsoN, will be found in the °Philosophical Magazine,” xxxiii,
p. 248.—Note added February 22, 1917.]

Note B. (To p. 118, middle.)

[Recently I have succeeded in proving the identity of « and sinxz with the determinants referred
to, using elementary algebraical methods. The construction of a formal justification of the analytical
methods used in the present paper is also being proceeded with, and I hope to be able later to deal
with the questions of convergence raised here, and to bring the present theory into satisfactory relation
with that based on BOLTZMANN’S equation.—Nofe added February 22, 1917.]

Note €. (To p. 129, line 2.)

[In a later paper it will be shown that considerations of convergence require a re-grouping of the terms
in these expansions, so that they become series of polynomials in C2. The expansions are really used in
this form in the present paper, the re-grouping of the terms being effected by means of the difference-
transformations described in § 5 (d).—Note added February 22, 1917.]

Note D.  (To p. 189, line 12.)

[Since the above was written the indicated result has been qualitatively confirmed in the case of three
pairs of gases. The time taken to attain the steady state was only a few hours in the experiments
referred to; they are described in a Note by Dr. F. W, DoorsoN and the author in the ¢ Philosophical
Magazine,’ xxxiil, p. 248 -~Note added February 22, 1917.]
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Note E. (To pp. 158, 184, 185.)

[In a note recently communicated to the ¢ Philosophical Magazine,” I have considered thermal diffusion
in the case of two molecules nearly or quite equal in mass, and very unequal in gize. If the difference of
mass is sufficiently small, the larger molecules will tend towards the cooler regions.— 4pril 30, 1917.]

Note F. (To p. 115.)

[In his ¢ Inaugural Dissertation,” Upsala, 1917 (received just before the final revision of the proofs of
this paper), D. ENSKOG gives a mathematical theory of simple and composite monatomic gases, based upon
BortzMANN’S integral equation for the velocity-distribution function. . The method of solution is, however,
different from that of his 1912 paper. The numerical and other results, including those relating to
thermal diffusion, are in agreement with those of this paper, though not always identical in form. While
perhaps less developed from the physical standpoint, Dr. ENSK0G’s work is mathematically much the more
complete. His elegant and accurate proofs will materially lighten the task of proving my own work to
be in conformity with BoUTZMANN’S equation.—April 30, 1917.]
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